| 1 |
– |
/* Copyright (c) 1986 Regents of the University of California */ |
| 2 |
– |
|
| 1 |
|
#ifndef lint |
| 2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
| 2 |
> |
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 6 |
– |
|
| 4 |
|
/* |
| 5 |
|
* sphere.c - compute ray intersection with spheres. |
| 9 |
– |
* |
| 10 |
– |
* 8/19/85 |
| 6 |
|
*/ |
| 7 |
|
|
| 8 |
< |
#include "ray.h" |
| 8 |
> |
#include "copyright.h" |
| 9 |
|
|
| 10 |
+ |
#include "ray.h" |
| 11 |
|
#include "otypes.h" |
| 12 |
+ |
#include "rtotypes.h" |
| 13 |
|
|
| 14 |
|
|
| 15 |
< |
o_sphere(so, r) /* compute intersection with sphere */ |
| 16 |
< |
OBJREC *so; |
| 17 |
< |
register RAY *r; |
| 15 |
> |
extern int |
| 16 |
> |
o_sphere( /* compute intersection with sphere */ |
| 17 |
> |
OBJREC *so, |
| 18 |
> |
register RAY *r |
| 19 |
> |
) |
| 20 |
|
{ |
| 21 |
|
double a, b, c; /* coefficients for quadratic equation */ |
| 22 |
|
double root[2]; /* quadratic roots */ |
| 23 |
|
int nroots; |
| 24 |
|
double t; |
| 25 |
< |
register double *ap; |
| 25 |
> |
register RREAL *ap; |
| 26 |
|
register int i; |
| 27 |
|
|
| 28 |
< |
if (so->oargs.nfargs != 4 || so->oargs.farg[3] <= FTINY) |
| 29 |
< |
objerror(so, USER, "bad arguments"); |
| 31 |
< |
|
| 28 |
> |
if (so->oargs.nfargs != 4) |
| 29 |
> |
objerror(so, USER, "bad # arguments"); |
| 30 |
|
ap = so->oargs.farg; |
| 31 |
+ |
if (ap[3] < -FTINY) { |
| 32 |
+ |
objerror(so, WARNING, "negative radius"); |
| 33 |
+ |
so->otype = so->otype == OBJ_SPHERE ? |
| 34 |
+ |
OBJ_BUBBLE : OBJ_SPHERE; |
| 35 |
+ |
ap[3] = -ap[3]; |
| 36 |
+ |
} else if (ap[3] <= FTINY) |
| 37 |
+ |
objerror(so, USER, "zero radius"); |
| 38 |
|
|
| 39 |
|
/* |
| 40 |
|
* We compute the intersection by substituting into |
| 42 |
|
* quadratic equation in t is then solved for the |
| 43 |
|
* smallest positive root, which is our point of |
| 44 |
|
* intersection. |
| 45 |
< |
* Because the ray direction is normalized, a is always 1. |
| 45 |
> |
* Since the ray is normalized, a should always be |
| 46 |
> |
* one. We compute it here to prevent instability in the |
| 47 |
> |
* intersection calculation. |
| 48 |
|
*/ |
| 49 |
< |
|
| 50 |
< |
a = 1.0; /* compute quadratic coefficients */ |
| 44 |
< |
b = c = 0.0; |
| 49 |
> |
/* compute quadratic coefficients */ |
| 50 |
> |
a = b = c = 0.0; |
| 51 |
|
for (i = 0; i < 3; i++) { |
| 52 |
+ |
a += r->rdir[i]*r->rdir[i]; |
| 53 |
|
t = r->rorg[i] - ap[i]; |
| 54 |
|
b += 2.0*r->rdir[i]*t; |
| 55 |
|
c += t*t; |
| 78 |
|
r->ron[i] = (r->rop[i] - ap[i]) / a; |
| 79 |
|
} |
| 80 |
|
r->rod = -DOT(r->rdir, r->ron); |
| 81 |
< |
r->rofs = 1.0; setident4(r->rofx); |
| 82 |
< |
r->robs = 1.0; setident4(r->robx); |
| 81 |
> |
r->rox = NULL; |
| 82 |
> |
r->pert[0] = r->pert[1] = r->pert[2] = 0.0; |
| 83 |
> |
r->uv[0] = r->uv[1] = 0.0; |
| 84 |
|
|
| 85 |
|
return(1); /* hit */ |
| 86 |
|
} |