--- ray/src/rt/sphere.c 1990/12/15 15:03:37 1.3 +++ ray/src/rt/sphere.c 1992/10/24 08:15:32 2.2 @@ -1,4 +1,4 @@ -/* Copyright (c) 1990 Regents of the University of California */ +/* Copyright (c) 1992 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; @@ -23,13 +23,19 @@ register RAY *r; double root[2]; /* quadratic roots */ int nroots; double t; - register double *ap; + register FLOAT *ap; register int i; - if (so->oargs.nfargs != 4 || so->oargs.farg[3] <= FTINY) - objerror(so, USER, "bad arguments"); - + if (so->oargs.nfargs != 4) + objerror(so, USER, "bad # arguments"); ap = so->oargs.farg; + if (ap[3] < -FTINY) { + objerror(so, WARNING, "negative radius"); + so->otype = so->otype == OBJ_SPHERE ? + OBJ_BUBBLE : OBJ_SPHERE; + ap[3] = -ap[3]; + } else if (ap[3] <= FTINY) + objerror(so, USER, "zero radius"); /* * We compute the intersection by substituting into @@ -37,12 +43,14 @@ register RAY *r; * quadratic equation in t is then solved for the * smallest positive root, which is our point of * intersection. - * Because the ray direction is normalized, a is always 1. + * Since the ray is normalized, a should always be + * one. We compute it here to prevent instability in the + * intersection calculation. */ - - a = 1.0; /* compute quadratic coefficients */ - b = c = 0.0; + /* compute quadratic coefficients */ + a = b = c = 0.0; for (i = 0; i < 3; i++) { + a += r->rdir[i]*r->rdir[i]; t = r->rorg[i] - ap[i]; b += 2.0*r->rdir[i]*t; c += t*t;