| 1 | greg | 1.1 | #ifndef lint | 
| 2 | schorsch | 2.7 | static const char RCSid[] = "$Id: sphere.c,v 2.6 2003/06/26 00:58:10 schorsch Exp $"; | 
| 3 | greg | 1.1 | #endif | 
| 4 |  |  | /* | 
| 5 |  |  | *  sphere.c - compute ray intersection with spheres. | 
| 6 | greg | 2.3 | */ | 
| 7 |  |  |  | 
| 8 | greg | 2.4 | #include "copyright.h" | 
| 9 | greg | 1.1 |  | 
| 10 |  |  | #include  "ray.h" | 
| 11 |  |  | #include  "otypes.h" | 
| 12 | schorsch | 2.7 | #include  "rtotypes.h" | 
| 13 | greg | 1.1 |  | 
| 14 |  |  |  | 
| 15 | schorsch | 2.7 | extern int | 
| 16 |  |  | o_sphere(                       /* compute intersection with sphere */ | 
| 17 |  |  | OBJREC  *so, | 
| 18 |  |  | register RAY  *r | 
| 19 |  |  | ) | 
| 20 | greg | 1.1 | { | 
| 21 |  |  | double  a, b, c;        /* coefficients for quadratic equation */ | 
| 22 |  |  | double  root[2];        /* quadratic roots */ | 
| 23 |  |  | int  nroots; | 
| 24 |  |  | double  t; | 
| 25 | schorsch | 2.6 | register RREAL  *ap; | 
| 26 | greg | 1.1 | register int  i; | 
| 27 |  |  |  | 
| 28 | greg | 1.4 | if (so->oargs.nfargs != 4) | 
| 29 |  |  | objerror(so, USER, "bad # arguments"); | 
| 30 | greg | 1.1 | ap = so->oargs.farg; | 
| 31 | greg | 1.4 | if (ap[3] < -FTINY) { | 
| 32 |  |  | objerror(so, WARNING, "negative radius"); | 
| 33 |  |  | so->otype = so->otype == OBJ_SPHERE ? | 
| 34 |  |  | OBJ_BUBBLE : OBJ_SPHERE; | 
| 35 |  |  | ap[3] = -ap[3]; | 
| 36 |  |  | } else if (ap[3] <= FTINY) | 
| 37 |  |  | objerror(so, USER, "zero radius"); | 
| 38 | greg | 1.1 |  | 
| 39 |  |  | /* | 
| 40 |  |  | *      We compute the intersection by substituting into | 
| 41 |  |  | *  the surface equation for the sphere.  The resulting | 
| 42 |  |  | *  quadratic equation in t is then solved for the | 
| 43 |  |  | *  smallest positive root, which is our point of | 
| 44 |  |  | *  intersection. | 
| 45 | greg | 2.2 | *      Since the ray is normalized, a should always be | 
| 46 |  |  | *  one.  We compute it here to prevent instability in the | 
| 47 |  |  | *  intersection calculation. | 
| 48 | greg | 1.1 | */ | 
| 49 | greg | 2.2 | /* compute quadratic coefficients */ | 
| 50 |  |  | a = b = c = 0.0; | 
| 51 | greg | 1.1 | for (i = 0; i < 3; i++) { | 
| 52 | greg | 2.2 | a += r->rdir[i]*r->rdir[i]; | 
| 53 | greg | 1.1 | t = r->rorg[i] - ap[i]; | 
| 54 |  |  | b += 2.0*r->rdir[i]*t; | 
| 55 |  |  | c += t*t; | 
| 56 |  |  | } | 
| 57 |  |  | c -= ap[3] * ap[3]; | 
| 58 |  |  |  | 
| 59 |  |  | nroots = quadratic(root, a, b, c);      /* solve quadratic */ | 
| 60 |  |  |  | 
| 61 |  |  | for (i = 0; i < nroots; i++)            /* get smallest positive */ | 
| 62 |  |  | if ((t = root[i]) > FTINY) | 
| 63 |  |  | break; | 
| 64 |  |  | if (i >= nroots) | 
| 65 |  |  | return(0);                      /* no positive root */ | 
| 66 |  |  |  | 
| 67 | greg | 1.2 | if (t >= r->rot) | 
| 68 |  |  | return(0);                      /* other is closer */ | 
| 69 |  |  |  | 
| 70 |  |  | r->ro = so; | 
| 71 |  |  | r->rot = t; | 
| 72 |  |  | /* compute normal */ | 
| 73 |  |  | a = ap[3]; | 
| 74 |  |  | if (so->otype == OBJ_BUBBLE) | 
| 75 |  |  | a = -a;                 /* reverse */ | 
| 76 |  |  | for (i = 0; i < 3; i++) { | 
| 77 |  |  | r->rop[i] = r->rorg[i] + r->rdir[i]*t; | 
| 78 |  |  | r->ron[i] = (r->rop[i] - ap[i]) / a; | 
| 79 | greg | 1.1 | } | 
| 80 | greg | 1.2 | r->rod = -DOT(r->rdir, r->ron); | 
| 81 | greg | 1.3 | r->rox = NULL; | 
| 82 | greg | 2.5 | r->pert[0] = r->pert[1] = r->pert[2] = 0.0; | 
| 83 |  |  | r->uv[0] = r->uv[1] = 0.0; | 
| 84 | greg | 1.2 |  | 
| 85 |  |  | return(1);                      /* hit */ | 
| 86 | greg | 1.1 | } |