ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/sphere.c
Revision: 2.2
Committed: Sat Oct 24 08:15:32 1992 UTC (32 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.1: +7 -5 lines
Log Message:
calculate "a" parameter rather than assuming direction is normalized

File Contents

# User Rev Content
1 greg 2.2 /* Copyright (c) 1992 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * sphere.c - compute ray intersection with spheres.
9     *
10     * 8/19/85
11     */
12    
13     #include "ray.h"
14    
15     #include "otypes.h"
16    
17    
18     o_sphere(so, r) /* compute intersection with sphere */
19     OBJREC *so;
20     register RAY *r;
21     {
22     double a, b, c; /* coefficients for quadratic equation */
23     double root[2]; /* quadratic roots */
24     int nroots;
25     double t;
26 greg 1.5 register FLOAT *ap;
27 greg 1.1 register int i;
28    
29 greg 1.4 if (so->oargs.nfargs != 4)
30     objerror(so, USER, "bad # arguments");
31 greg 1.1 ap = so->oargs.farg;
32 greg 1.4 if (ap[3] < -FTINY) {
33     objerror(so, WARNING, "negative radius");
34     so->otype = so->otype == OBJ_SPHERE ?
35     OBJ_BUBBLE : OBJ_SPHERE;
36     ap[3] = -ap[3];
37     } else if (ap[3] <= FTINY)
38     objerror(so, USER, "zero radius");
39 greg 1.1
40     /*
41     * We compute the intersection by substituting into
42     * the surface equation for the sphere. The resulting
43     * quadratic equation in t is then solved for the
44     * smallest positive root, which is our point of
45     * intersection.
46 greg 2.2 * Since the ray is normalized, a should always be
47     * one. We compute it here to prevent instability in the
48     * intersection calculation.
49 greg 1.1 */
50 greg 2.2 /* compute quadratic coefficients */
51     a = b = c = 0.0;
52 greg 1.1 for (i = 0; i < 3; i++) {
53 greg 2.2 a += r->rdir[i]*r->rdir[i];
54 greg 1.1 t = r->rorg[i] - ap[i];
55     b += 2.0*r->rdir[i]*t;
56     c += t*t;
57     }
58     c -= ap[3] * ap[3];
59    
60     nroots = quadratic(root, a, b, c); /* solve quadratic */
61    
62     for (i = 0; i < nroots; i++) /* get smallest positive */
63     if ((t = root[i]) > FTINY)
64     break;
65     if (i >= nroots)
66     return(0); /* no positive root */
67    
68 greg 1.2 if (t >= r->rot)
69     return(0); /* other is closer */
70    
71     r->ro = so;
72     r->rot = t;
73     /* compute normal */
74     a = ap[3];
75     if (so->otype == OBJ_BUBBLE)
76     a = -a; /* reverse */
77     for (i = 0; i < 3; i++) {
78     r->rop[i] = r->rorg[i] + r->rdir[i]*t;
79     r->ron[i] = (r->rop[i] - ap[i]) / a;
80 greg 1.1 }
81 greg 1.2 r->rod = -DOT(r->rdir, r->ron);
82 greg 1.3 r->rox = NULL;
83 greg 1.2
84     return(1); /* hit */
85 greg 1.1 }