#ifndef lint static const char RCSid[] = "$Id: source.c,v 2.48 2005/04/14 17:43:43 greg Exp $"; #endif /* * source.c - routines dealing with illumination sources. * * External symbols declared in source.h */ #include "ray.h" #include "otypes.h" #include "rtotypes.h" #include "source.h" #include "random.h" extern double ssampdist; /* scatter sampling distance */ #ifndef MAXSSAMP #define MAXSSAMP 16 /* maximum samples per ray */ #endif /* * Structures used by direct() */ typedef struct { int sno; /* source number */ FVECT dir; /* source direction */ COLOR coef; /* material coefficient */ COLOR val; /* contribution */ } CONTRIB; /* direct contribution */ typedef struct { int sndx; /* source index (to CONTRIB array) */ float brt; /* brightness (for comparison) */ } CNTPTR; /* contribution pointer */ static CONTRIB *srccnt; /* source contributions in direct() */ static CNTPTR *cntord; /* source ordering in direct() */ static int maxcntr = 0; /* size of contribution arrays */ static int cntcmp(const void *p1, const void *p2); extern OBJREC * /* find an object's actual material */ findmaterial(register OBJREC *o) { while (!ismaterial(o->otype)) { if (o->otype == MOD_ALIAS && o->oargs.nsargs) { OBJECT aobj; OBJREC *ao; aobj = lastmod(objndx(o), o->oargs.sarg[0]); if (aobj < 0) objerror(o, USER, "bad reference"); ao = objptr(aobj); if (ismaterial(ao->otype)) return(ao); } if (o->omod == OVOID) return(NULL); o = objptr(o->omod); } return(o); /* mixtures will return NULL */ } extern void marksources(void) /* find and mark source objects */ { int foundsource = 0; int i; register OBJREC *o, *m; register int ns; /* initialize dispatch table */ initstypes(); /* find direct sources */ for (i = 0; i < nsceneobjs; i++) { o = objptr(i); if (!issurface(o->otype) || o->omod == OVOID) continue; /* find material */ m = findmaterial(objptr(o->omod)); if (m == NULL || !islight(m->otype)) continue; /* not source modifier */ if (m->oargs.nfargs != (m->otype == MAT_GLOW ? 4 : m->otype == MAT_SPOT ? 7 : 3)) objerror(m, USER, "bad # arguments"); if (m->otype == MAT_GLOW && o->otype != OBJ_SOURCE && m->oargs.farg[3] <= FTINY) continue; /* don't bother */ if (m->oargs.farg[0] <= FTINY && m->oargs.farg[1] <= FTINY && m->oargs.farg[2] <= FTINY) continue; /* don't bother */ if (sfun[o->otype].of == NULL || sfun[o->otype].of->setsrc == NULL) objerror(o, USER, "illegal material"); if ((ns = newsource()) < 0) goto memerr; setsource(&source[ns], o); if (m->otype == MAT_GLOW) { source[ns].sflags |= SPROX; source[ns].sl.prox = m->oargs.farg[3]; if (source[ns].sflags & SDISTANT) source[ns].sflags |= SSKIP; } else if (m->otype == MAT_SPOT) { source[ns].sflags |= SSPOT; if ((source[ns].sl.s = makespot(m)) == NULL) goto memerr; if (source[ns].sflags & SFLAT && !checkspot(source[ns].sl.s,source[ns].snorm)) { objerror(o, WARNING, "invalid spotlight direction"); source[ns].sflags |= SSKIP; } } #if SHADCACHE initobscache(ns); #endif if (!(source[ns].sflags & SSKIP)) foundsource++; } if (!foundsource) { error(WARNING, "no light sources found"); return; } markvirtuals(); /* find and add virtual sources */ /* allocate our contribution arrays */ maxcntr = nsources + MAXSPART; /* start with this many */ srccnt = (CONTRIB *)malloc(maxcntr*sizeof(CONTRIB)); cntord = (CNTPTR *)malloc(maxcntr*sizeof(CNTPTR)); if ((srccnt == NULL) | (cntord == NULL)) goto memerr; return; memerr: error(SYSTEM, "out of memory in marksources"); } extern void freesources(void) /* free all source structures */ { if (nsources > 0) { #if SHADCACHE while (nsources--) freeobscache(&source[nsources]); #endif free((void *)source); source = NULL; nsources = 0; } if (maxcntr <= 0) return; free((void *)srccnt); srccnt = NULL; free((void *)cntord); cntord = NULL; maxcntr = 0; } extern int srcray( /* send a ray to a source, return domega */ register RAY *sr, /* returned source ray */ RAY *r, /* ray which hit object */ SRCINDEX *si /* source sample index */ ) { double d; /* distance to source */ register SRCREC *srcp; rayorigin(sr, r, SHADOW, 1.0); /* ignore limits */ while ((d = nextssamp(sr, si)) != 0.0) { sr->rsrc = si->sn; /* remember source */ srcp = source + si->sn; if (srcp->sflags & SDISTANT) { if (srcp->sflags & SSPOT && spotout(sr, srcp->sl.s)) continue; return(1); /* sample OK */ } /* local source */ /* check proximity */ if (srcp->sflags & SPROX && d > srcp->sl.prox) continue; /* check angle */ if (srcp->sflags & SSPOT) { if (spotout(sr, srcp->sl.s)) continue; /* adjust solid angle */ si->dom *= d*d; d += srcp->sl.s->flen; si->dom /= d*d; } return(1); /* sample OK */ } return(0); /* no more samples */ } extern void srcvalue( /* punch ray to source and compute value */ register RAY *r ) { register SRCREC *sp; sp = &source[r->rsrc]; if (sp->sflags & SVIRTUAL) { /* virtual source */ /* check intersection */ if (!(*ofun[sp->so->otype].funp)(sp->so, r)) return; if (!rayshade(r, r->ro->omod)) /* compute contribution */ goto nomat; rayparticipate(r); return; } /* compute intersection */ if (sp->sflags & SDISTANT ? sourcehit(r) : (*ofun[sp->so->otype].funp)(sp->so, r)) { if (sp->sa.success >= 0) sp->sa.success++; if (!rayshade(r, r->ro->omod)) /* compute contribution */ goto nomat; rayparticipate(r); return; } /* we missed our mark! */ if (sp->sa.success < 0) return; /* bitched already */ sp->sa.success -= AIMREQT; if (sp->sa.success >= 0) return; /* leniency */ sprintf(errmsg, "aiming failure for light source \"%s\"", sp->so->oname); error(WARNING, errmsg); /* issue warning */ return; nomat: objerror(r->ro, USER, "material not found"); } static int transillum( /* check if material is transparent illum */ OBJECT obj ) { OBJREC *m = findmaterial(objptr(obj)); if (m == NULL) return(1); if (m->otype != MAT_ILLUM) return(0); return(!m->oargs.nsargs || !strcmp(m->oargs.sarg[0], VOIDID)); } extern int sourcehit( /* check to see if ray hit distant source */ register RAY *r ) { int glowsrc = -1; int transrc = -1; int first, last; register int i; if (r->rsrc >= 0) { /* check only one if aimed */ first = last = r->rsrc; } else { /* otherwise check all */ first = 0; last = nsources-1; } for (i = first; i <= last; i++) { if ((source[i].sflags & (SDISTANT|SVIRTUAL)) != SDISTANT) continue; /* * Check to see if ray is within * solid angle of source. */ if (2.*PI*(1. - DOT(source[i].sloc,r->rdir)) > source[i].ss2) continue; /* is it the only possibility? */ if (first == last) { r->ro = source[i].so; break; } /* * If it's a glow or transparent illum, just remember it. */ if (source[i].sflags & SSKIP) { glowsrc = i; continue; } if (transillum(source[i].so->omod)) { transrc = i; continue; } r->ro = source[i].so; /* otherwise, use first hit */ break; } /* * Do we need fallback? */ if (r->ro == NULL) { if (transrc >= 0 && r->crtype & (AMBIENT|SPECULAR)) return(0); /* avoid overcounting */ if (glowsrc >= 0) r->ro = source[glowsrc].so; else return(0); /* nothing usable */ } /* * Make assignments. */ r->robj = objndx(r->ro); for (i = 0; i < 3; i++) r->ron[i] = -r->rdir[i]; r->rod = 1.0; r->pert[0] = r->pert[1] = r->pert[2] = 0.0; r->uv[0] = r->uv[1] = 0.0; r->rox = NULL; return(1); } static int cntcmp( /* contribution compare (descending) */ const void *p1, const void *p2 ) { register const CNTPTR *sc1 = (const CNTPTR *)p1; register const CNTPTR *sc2 = (const CNTPTR *)p2; if (sc1->brt > sc2->brt) return(-1); if (sc1->brt < sc2->brt) return(1); return(0); } extern void direct( /* add direct component */ RAY *r, /* ray that hit surface */ srcdirf_t *f, /* direct component coefficient function */ void *p /* data for f */ ) { register int sn; register CONTRIB *scp; SRCINDEX si; int nshadcheck, ncnts; int nhits; double prob, ourthresh, hwt; RAY sr; /* NOTE: srccnt and cntord global so no recursion */ if (nsources <= 0) return; /* no sources?! */ /* potential contributions */ initsrcindex(&si); for (sn = 0; srcray(&sr, r, &si); sn++) { if (sn >= maxcntr) { maxcntr = sn + MAXSPART; srccnt = (CONTRIB *)realloc((void *)srccnt, maxcntr*sizeof(CONTRIB)); cntord = (CNTPTR *)realloc((void *)cntord, maxcntr*sizeof(CNTPTR)); if ((srccnt == NULL) | (cntord == NULL)) error(SYSTEM, "out of memory in direct"); } cntord[sn].sndx = sn; scp = srccnt + sn; scp->sno = sr.rsrc; /* compute coefficient */ (*f)(scp->coef, p, sr.rdir, si.dom); cntord[sn].brt = bright(scp->coef); if (cntord[sn].brt <= 0.0) continue; #if SHADCACHE /* check shadow cache */ if (si.np == 1 && srcblocked(&sr)) { cntord[sn].brt = 0.0; continue; } #endif VCOPY(scp->dir, sr.rdir); /* compute potential */ sr.revf = srcvalue; rayvalue(&sr); copycolor(scp->val, sr.rcol); multcolor(scp->val, scp->coef); cntord[sn].brt = bright(scp->val); } /* sort contributions */ qsort(cntord, sn, sizeof(CNTPTR), cntcmp); { /* find last */ register int l, m; ncnts = l = sn; sn = 0; while ((m = (sn + ncnts) >> 1) != l) { if (cntord[m].brt > 0.0) sn = m; else ncnts = m; l = m; } } if (ncnts == 0) return; /* no contributions! */ /* accumulate tail */ for (sn = ncnts-1; sn > 0; sn--) cntord[sn-1].brt += cntord[sn].brt; /* compute number to check */ nshadcheck = pow((double)ncnts, shadcert) + .5; /* modify threshold */ ourthresh = shadthresh / r->rweight; /* test for shadows */ for (nhits = 0, hwt = 0.0, sn = 0; sn < ncnts; hwt += (double)source[scp->sno].nhits / (double)source[scp->sno].ntests, sn++) { /* check threshold */ if ((sn+nshadcheck>=ncnts ? cntord[sn].brt : cntord[sn].brt-cntord[sn+nshadcheck].brt) < ourthresh*bright(r->rcol)) break; scp = srccnt + cntord[sn].sndx; /* test for hit */ rayorigin(&sr, r, SHADOW, 1.0); VCOPY(sr.rdir, scp->dir); sr.rsrc = scp->sno; /* keep statistics */ if (source[scp->sno].ntests++ > 0xfffffff0) { source[scp->sno].ntests >>= 1; source[scp->sno].nhits >>= 1; } if (localhit(&sr, &thescene) && ( sr.ro != source[scp->sno].so || source[scp->sno].sflags & SFOLLOW )) { /* follow entire path */ raycont(&sr); rayparticipate(&sr); if (trace != NULL) (*trace)(&sr); /* trace execution */ if (bright(sr.rcol) <= FTINY) { #if SHADCACHE if ((scp <= srccnt || scp[-1].sno != scp->sno) && (scp >= srccnt+ncnts-1 || scp[1].sno != scp->sno)) srcblocker(&sr); #endif continue; /* missed! */ } copycolor(scp->val, sr.rcol); multcolor(scp->val, scp->coef); } /* add contribution if hit */ addcolor(r->rcol, scp->val); nhits++; source[scp->sno].nhits++; } /* source hit rate */ if (hwt > FTINY) hwt = (double)nhits / hwt; else hwt = 0.5; #ifdef DEBUG sprintf(errmsg, "%d tested, %d untested, %f conditional hit rate\n", sn, ncnts-sn, hwt); eputs(errmsg); #endif /* add in untested sources */ for ( ; sn < ncnts; sn++) { scp = srccnt + cntord[sn].sndx; prob = hwt * (double)source[scp->sno].nhits / (double)source[scp->sno].ntests; if (prob > 1.0) prob = 1.0; scalecolor(scp->val, prob); addcolor(r->rcol, scp->val); } } extern void srcscatter( /* compute source scattering into ray */ register RAY *r ) { int oldsampndx; int nsamps; RAY sr; SRCINDEX si; double t, d; double re, ge, be; COLOR cvext; int i, j; if (r->slights == NULL || r->slights[0] == 0 || r->gecc >= 1.-FTINY || r->rot >= FHUGE) return; if (ssampdist <= FTINY || (nsamps = r->rot/ssampdist + .5) < 1) nsamps = 1; #if MAXSSAMP else if (nsamps > MAXSSAMP) nsamps = MAXSSAMP; #endif oldsampndx = samplendx; samplendx = random()&0x7fff; /* randomize */ for (i = r->slights[0]; i > 0; i--) { /* for each source */ for (j = 0; j < nsamps; j++) { /* for each sample position */ samplendx++; t = r->rot * (j+frandom())/nsamps; /* extinction */ re = t*colval(r->cext,RED); ge = t*colval(r->cext,GRN); be = t*colval(r->cext,BLU); setcolor(cvext, re > 92. ? 0. : exp(-re), ge > 92. ? 0. : exp(-ge), be > 92. ? 0. : exp(-be)); if (intens(cvext) <= FTINY) break; /* too far away */ sr.rorg[0] = r->rorg[0] + r->rdir[0]*t; sr.rorg[1] = r->rorg[1] + r->rdir[1]*t; sr.rorg[2] = r->rorg[2] + r->rdir[2]*t; sr.rmax = 0.; initsrcindex(&si); /* sample ray to this source */ si.sn = r->slights[i]; nopart(&si, &sr); if (!srcray(&sr, NULL, &si) || sr.rsrc != r->slights[i]) continue; /* no path */ #if SHADCACHE if (srcblocked(&sr)) /* check shadow cache */ continue; #endif copycolor(sr.cext, r->cext); copycolor(sr.albedo, r->albedo); sr.gecc = r->gecc; sr.slights = r->slights; rayvalue(&sr); /* eval. source ray */ if (bright(sr.rcol) <= FTINY) { #if SHADCACHE srcblocker(&sr); /* add blocker to cache */ #endif continue; } if (r->gecc <= FTINY) /* compute P(theta) */ d = 1.; else { d = DOT(r->rdir, sr.rdir); d = 1. + r->gecc*r->gecc - 2.*r->gecc*d; d = (1. - r->gecc*r->gecc) / (d*sqrt(d)); } /* other factors */ d *= si.dom * r->rot / (4.*PI*nsamps); multcolor(sr.rcol, r->cext); multcolor(sr.rcol, r->albedo); scalecolor(sr.rcol, d); multcolor(sr.rcol, cvext); addcolor(r->rcol, sr.rcol); /* add it in */ } } samplendx = oldsampndx; } /**************************************************************** * The following macros were separated from the m_light() routine * because they are very nasty and difficult to understand. */ /* illumblock * * * We cannot allow an illum to pass to another illum, because that * would almost certainly constitute overcounting. * However, we do allow an illum to pass to another illum * that is actually going to relay to a virtual light source. * We also prevent an illum from passing to a glow; this provides a * convenient mechanism for defining detailed light source * geometry behind (or inside) an effective radiator. */ static int weaksrcmat(OBJECT obj) /* identify material */ { OBJREC *m = findmaterial(objptr(obj)); if (m == NULL) return(0); return((m->otype==MAT_ILLUM) | (m->otype==MAT_GLOW)); } #define illumblock(m, r) (!(source[r->rsrc].sflags&SVIRTUAL) && \ r->rod > 0.0 && \ weaksrcmat(source[r->rsrc].so->omod)) /* wrongsource * * * This source is the wrong source (ie. overcounted) if we are * aimed to a different source than the one we hit and the one * we hit is not an illum that should be passed. */ #define wrongsource(m, r) (r->rsrc>=0 && source[r->rsrc].so!=r->ro && \ (m->otype!=MAT_ILLUM || illumblock(m,r))) /* distglow * * * A distant glow is an object that sometimes acts as a light source, * but is too far away from the test point to be one in this case. * (Glows with negative radii should NEVER participate in illumination.) */ #define distglow(m, r, d) (m->otype==MAT_GLOW && \ m->oargs.farg[3] >= -FTINY && \ d > m->oargs.farg[3]) /* badcomponent * * * We must avoid counting light sources in the ambient calculation, * since the direct component is handled separately. Therefore, any * ambient ray which hits an active light source must be discarded. * The same is true for stray specular samples, since the specular * contribution from light sources is calculated separately. */ #define badcomponent(m, r) (r->crtype&(AMBIENT|SPECULAR) && \ !(r->crtype&SHADOW || r->rod < 0.0 || \ /* not 100% correct */ distglow(m, r, r->rot))) /* passillum * * * An illum passes to another material type when we didn't hit it * on purpose (as part of a direct calculation), or it is relaying * a virtual light source. */ #define passillum(m, r) (m->otype==MAT_ILLUM && \ (r->rsrc<0 || source[r->rsrc].so!=r->ro || \ source[r->rsrc].sflags&SVIRTUAL)) /* srcignore * * * The -dv flag is normally on for sources to be visible. */ #define srcignore(m, r) !(directvis || r->crtype&SHADOW || \ distglow(m, r, raydist(r,PRIMARY))) extern int m_light( /* ray hit a light source */ register OBJREC *m, register RAY *r ) { /* check for over-counting */ if (badcomponent(m, r)) return(1); if (wrongsource(m, r)) return(1); /* check for passed illum */ if (passillum(m, r)) { if (m->oargs.nsargs && strcmp(m->oargs.sarg[0], VOIDID)) return(rayshade(r,lastmod(objndx(m),m->oargs.sarg[0]))); raytrans(r); return(1); } /* otherwise treat as source */ /* check for behind */ if (r->rod < 0.0) return(1); /* check for invisibility */ if (srcignore(m, r)) return(1); /* check for outside spot */ if (m->otype==MAT_SPOT && spotout(r, makespot(m))) return(1); /* get distribution pattern */ raytexture(r, m->omod); /* get source color */ setcolor(r->rcol, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); /* modify value */ multcolor(r->rcol, r->pcol); return(1); }