| 9 |
|
|
| 10 |
|
#include "ray.h" |
| 11 |
|
#include "otypes.h" |
| 12 |
+ |
#include "otspecial.h" |
| 13 |
|
#include "rtotypes.h" |
| 14 |
|
#include "source.h" |
| 15 |
|
#include "random.h" |
| 15 |
– |
#include "pmap.h" |
| 16 |
|
#include "pmapsrc.h" |
| 17 |
+ |
#include "pmapmat.h" |
| 18 |
|
|
| 19 |
|
#ifndef MAXSSAMP |
| 20 |
|
#define MAXSSAMP 16 /* maximum samples per ray */ |
| 43 |
|
static int cntcmp(const void *p1, const void *p2); |
| 44 |
|
|
| 45 |
|
|
| 45 |
– |
OBJREC * /* find an object's actual material */ |
| 46 |
– |
findmaterial(OBJREC *o) |
| 47 |
– |
{ |
| 48 |
– |
while (!ismaterial(o->otype)) { |
| 49 |
– |
if (o->otype == MOD_ALIAS && o->oargs.nsargs) { |
| 50 |
– |
OBJECT aobj; |
| 51 |
– |
OBJREC *ao; |
| 52 |
– |
aobj = lastmod(objndx(o), o->oargs.sarg[0]); |
| 53 |
– |
if (aobj < 0) |
| 54 |
– |
objerror(o, USER, "bad reference"); |
| 55 |
– |
ao = objptr(aobj); |
| 56 |
– |
if (ismaterial(ao->otype)) |
| 57 |
– |
return(ao); |
| 58 |
– |
if (ao->otype == MOD_ALIAS) { |
| 59 |
– |
o = ao; |
| 60 |
– |
continue; |
| 61 |
– |
} |
| 62 |
– |
} |
| 63 |
– |
if (o->omod == OVOID) |
| 64 |
– |
return(NULL); |
| 65 |
– |
o = objptr(o->omod); |
| 66 |
– |
} |
| 67 |
– |
return(o); /* mixtures will return NULL */ |
| 68 |
– |
} |
| 69 |
– |
|
| 70 |
– |
|
| 46 |
|
void |
| 47 |
|
marksources(void) /* find and mark source objects */ |
| 48 |
|
{ |
| 117 |
|
return; |
| 118 |
|
} |
| 119 |
|
#if SHADCACHE |
| 120 |
< |
initobscache(ns); |
| 120 |
> |
for (ns = 0; ns < nsources; ns++) /* initialize obstructor cache */ |
| 121 |
> |
initobscache(ns); |
| 122 |
|
#endif |
| 123 |
|
/* PMAP: disable virtual sources */ |
| 124 |
|
if (!photonMapping) |
| 518 |
|
SRCINDEX si; |
| 519 |
|
double t, d; |
| 520 |
|
double re, ge, be; |
| 521 |
< |
COLOR cvext, pmapInscatter; |
| 521 |
> |
COLOR cvext; |
| 522 |
|
int i, j; |
| 523 |
|
|
| 524 |
< |
/* PMAP: do unconditional inscattering for volume photons ? */ |
| 525 |
< |
/* if (!volumePhotonMapping) */ |
| 526 |
< |
if (r->slights == NULL || r->slights[0] == 0 |
| 527 |
< |
|| r->gecc >= 1.-FTINY || r->rot >= FHUGE) |
| 524 |
> |
if (r->rot >= FHUGE*.99 || r->gecc >= 1.-FTINY) |
| 525 |
> |
return; /* this can never work */ |
| 526 |
> |
/* PMAP: do unconditional inscattering for volume photons */ |
| 527 |
> |
if (!volumePhotonMapping && (r->slights == NULL || r->slights[0] == 0)) |
| 528 |
|
return; |
| 529 |
|
|
| 530 |
|
if (ssampdist <= FTINY || (nsamps = r->rot/ssampdist + .5) < 1) |
| 535 |
|
#endif |
| 536 |
|
oldsampndx = samplendx; |
| 537 |
|
samplendx = random()&0x7fff; /* randomize */ |
| 538 |
< |
for (i = r->slights[0]; i > 0; i--) { /* for each source */ |
| 538 |
> |
for (i = volumePhotonMapping ? 1 : r->slights[0]; i > 0; i--) { |
| 539 |
> |
/* for each source OR once if volume photon map enabled */ |
| 540 |
|
for (j = 0; j < nsamps; j++) { /* for each sample position */ |
| 541 |
|
samplendx++; |
| 542 |
|
t = r->rot * (j+frandom())/nsamps; |
| 552 |
|
sr.rorg[0] = r->rorg[0] + r->rdir[0]*t; |
| 553 |
|
sr.rorg[1] = r->rorg[1] + r->rdir[1]*t; |
| 554 |
|
sr.rorg[2] = r->rorg[2] + r->rdir[2]*t; |
| 555 |
< |
initsrcindex(&si); /* sample ray to this source */ |
| 556 |
< |
si.sn = r->slights[i]; |
| 557 |
< |
nopart(&si, &sr); |
| 558 |
< |
if (!srcray(&sr, NULL, &si) || |
| 559 |
< |
sr.rsrc != r->slights[i]) |
| 560 |
< |
continue; /* no path */ |
| 555 |
> |
|
| 556 |
> |
if (!volumePhotonMapping) { |
| 557 |
> |
initsrcindex(&si); /* sample ray to this source */ |
| 558 |
> |
si.sn = r->slights[i]; |
| 559 |
> |
nopart(&si, &sr); |
| 560 |
> |
if (!srcray(&sr, NULL, &si) || |
| 561 |
> |
sr.rsrc != r->slights[i]) |
| 562 |
> |
continue; /* no path */ |
| 563 |
|
#if SHADCACHE |
| 564 |
< |
if (srcblocked(&sr)) /* check shadow cache */ |
| 565 |
< |
continue; |
| 564 |
> |
if (srcblocked(&sr)) /* check shadow cache */ |
| 565 |
> |
continue; |
| 566 |
|
#endif |
| 567 |
< |
copycolor(sr.cext, r->cext); |
| 568 |
< |
copycolor(sr.albedo, r->albedo); |
| 569 |
< |
sr.gecc = r->gecc; |
| 570 |
< |
sr.slights = r->slights; |
| 571 |
< |
rayvalue(&sr); /* eval. source ray */ |
| 572 |
< |
if (bright(sr.rcol) <= FTINY) { |
| 567 |
> |
copycolor(sr.cext, r->cext); |
| 568 |
> |
copycolor(sr.albedo, r->albedo); |
| 569 |
> |
sr.gecc = r->gecc; |
| 570 |
> |
sr.slights = r->slights; |
| 571 |
> |
rayvalue(&sr); /* eval. source ray */ |
| 572 |
> |
if (bright(sr.rcol) <= FTINY) { |
| 573 |
|
#if SHADCACHE |
| 574 |
< |
srcblocker(&sr); /* add blocker to cache */ |
| 574 |
> |
srcblocker(&sr); /* add blocker to cache */ |
| 575 |
|
#endif |
| 576 |
< |
continue; |
| 577 |
< |
} |
| 578 |
< |
if (r->gecc <= FTINY) /* compute P(theta) */ |
| 579 |
< |
d = 1.; |
| 580 |
< |
else { |
| 581 |
< |
d = DOT(r->rdir, sr.rdir); |
| 582 |
< |
d = 1. + r->gecc*r->gecc - 2.*r->gecc*d; |
| 583 |
< |
d = (1. - r->gecc*r->gecc) / (d*sqrt(d)); |
| 584 |
< |
} |
| 576 |
> |
continue; |
| 577 |
> |
} |
| 578 |
> |
if (r->gecc <= FTINY) /* compute P(theta) */ |
| 579 |
> |
d = 1.; |
| 580 |
> |
else { |
| 581 |
> |
d = DOT(r->rdir, sr.rdir); |
| 582 |
> |
d = 1. + r->gecc*r->gecc - 2.*r->gecc*d; |
| 583 |
> |
d = (1. - r->gecc*r->gecc) / (d*sqrt(d)); |
| 584 |
> |
} |
| 585 |
|
/* other factors */ |
| 586 |
< |
d *= si.dom * r->rot / (4.*PI*nsamps); |
| 587 |
< |
scalecolor(sr.rcol, d); |
| 588 |
< |
|
| 589 |
< |
/* PMAP: Add ambient inscattering from volume photons once only */ |
| 590 |
< |
if (volumePhotonMapping && i == 1) { |
| 591 |
< |
inscatterVolumePmap(&sr, pmapInscatter); |
| 592 |
< |
scalecolor(pmapInscatter, r -> rot / nsamps); |
| 593 |
< |
addcolor(sr.rcol, pmapInscatter); |
| 594 |
< |
} |
| 595 |
< |
|
| 586 |
> |
d *= si.dom * r->rot / (4.*PI*nsamps); |
| 587 |
> |
scalecolor(sr.rcol, d); |
| 588 |
> |
} else { |
| 589 |
> |
/* PMAP: Add ambient inscattering from |
| 590 |
> |
* volume photons; note we reverse the |
| 591 |
> |
* incident ray direction since we're |
| 592 |
> |
* now in *backward* raytracing mode! */ |
| 593 |
> |
sr.rdir [0] = -r -> rdir [0]; |
| 594 |
> |
sr.rdir [1] = -r -> rdir [1]; |
| 595 |
> |
sr.rdir [2] = -r -> rdir [2]; |
| 596 |
> |
sr.gecc = r -> gecc; |
| 597 |
> |
inscatterVolumePmap(&sr, sr.rcol); |
| 598 |
> |
scalecolor(sr.rcol, r -> rot / nsamps); |
| 599 |
> |
} |
| 600 |
|
multcolor(sr.rcol, r->cext); |
| 601 |
|
multcolor(sr.rcol, r->albedo); |
| 602 |
|
multcolor(sr.rcol, cvext); |
| 665 |
|
* The same is true for stray specular samples, since the specular |
| 666 |
|
* contribution from light sources is calculated separately. |
| 667 |
|
*/ |
| 668 |
< |
|
| 669 |
< |
#define badcomponent(m, r) (r->crtype&(AMBIENT|SPECULAR) && \ |
| 668 |
> |
/* PMAP: Also avoid counting sources via transferred ambient rays (e.g. |
| 669 |
> |
* through glass) when photon mapping is enabled, as these indirect |
| 670 |
> |
* components are already accounted for. |
| 671 |
> |
*/ |
| 672 |
> |
#define badcomponent(m, r) (srcRayInPmap(r) || \ |
| 673 |
> |
(r->crtype&(AMBIENT|SPECULAR) && \ |
| 674 |
|
!(r->crtype&SHADOW || r->rod < 0.0 || \ |
| 675 |
< |
/* not 100% correct */ distglow(m, r, r->rot))) |
| 675 |
> |
/* not 100% correct */ distglow(m, r, r->rot)))) |
| 676 |
|
|
| 677 |
|
/* passillum * |
| 678 |
|
* |