#ifndef lint static const char RCSid[] = "$Id: rtrace.c,v 2.90 2020/04/04 15:38:52 greg Exp $"; #endif /* * rtrace.c - program and variables for individual ray tracing. */ #include "copyright.h" /* * Input is in the form: * * xorg yorg zorg xdir ydir zdir * * The direction need not be normalized. Output is flexible. * If the direction vector is (0,0,0), then the output is flushed. * All values default to ascii representation of real * numbers. Binary representations can be selected * with '-ff' for float or '-fd' for double. By default, * radiance is computed. The '-i' or '-I' options indicate that * irradiance values are desired. */ #include #include "platform.h" #include "ray.h" #include "ambient.h" #include "source.h" #include "otypes.h" #include "otspecial.h" #include "resolu.h" #include "random.h" extern int inform; /* input format */ extern int outform; /* output format */ extern char *outvals; /* output values */ extern int imm_irrad; /* compute immediate irradiance? */ extern int lim_dist; /* limit distance? */ extern char *tralist[]; /* list of modifers to trace (or no) */ extern int traincl; /* include == 1, exclude == 0 */ extern int hresolu; /* horizontal resolution */ extern int vresolu; /* vertical resolution */ static int castonly = 0; #ifndef MAXTSET #define MAXTSET 8191 /* maximum number in trace set */ #endif OBJECT traset[MAXTSET+1]={0}; /* trace include/exclude set */ static RAY thisray; /* for our convenience */ static FILE *inpfp = NULL; /* input stream pointer */ static FVECT *inp_queue = NULL; /* ray input queue if flushing */ static int inp_qpos = 0; /* next ray to return */ static int inp_qend = 0; /* number of rays in this work group */ typedef void putf_t(RREAL *v, int n); static putf_t puta, putd, putf, putrgbe; typedef void oputf_t(RAY *r); static oputf_t oputo, oputd, oputv, oputV, oputl, oputL, oputc, oputp, oputr, oputR, oputx, oputX, oputn, oputN, oputs, oputw, oputW, oputm, oputM, oputtilde; static void setoutput(char *vs); extern void tranotify(OBJECT obj); static void bogusray(void); static void raycast(RAY *r); static void rayirrad(RAY *r); static void rtcompute(FVECT org, FVECT dir, double dmax); static int printvals(RAY *r); static int getvec(FVECT vec, int fmt, FILE *fp); static int iszerovec(const FVECT vec); static double nextray(FVECT org, FVECT dir); static void tabin(RAY *r); static void ourtrace(RAY *r); static oputf_t *ray_out[32], *every_out[32]; static putf_t *putreal; void quit( /* quit program */ int code ) { if (ray_pnprocs > 0) /* close children if any */ ray_pclose(0); #ifndef NON_POSIX else if (!ray_pnprocs) { headclean(); /* delete header file */ pfclean(); /* clean up persist files */ } #endif exit(code); } char * formstr( /* return format identifier */ int f ) { switch (f) { case 'a': return("ascii"); case 'f': return("float"); case 'd': return("double"); case 'c': return(COLRFMT); } return("unknown"); } extern void rtrace( /* trace rays from file */ char *fname, int nproc ) { unsigned long vcount = (hresolu > 1) ? (unsigned long)hresolu*vresolu : (unsigned long)vresolu; long nextflush = (!vresolu | (hresolu <= 1)) * hresolu; int something2flush = 0; FILE *fp; double d; FVECT orig, direc; /* set up input */ if (fname == NULL) inpfp = stdin; else if ((inpfp = fopen(fname, "r")) == NULL) { sprintf(errmsg, "cannot open input file \"%s\"", fname); error(SYSTEM, errmsg); } #ifdef getc_unlocked flockfile(inpfp); /* avoid lock/unlock overhead */ flockfile(stdout); #endif if (inform != 'a') SET_FILE_BINARY(inpfp); /* set up output */ setoutput(outvals); if (imm_irrad) castonly = 0; else if (castonly || every_out[0] != NULL) nproc = 1; /* don't bother multiprocessing */ if ((nextflush > 0) & (nproc > nextflush)) { error(WARNING, "reducing number of processes to match flush interval"); nproc = nextflush; } switch (outform) { case 'a': putreal = puta; break; case 'f': putreal = putf; break; case 'd': putreal = putd; break; case 'c': if (outvals[0] && (outvals[1] || !strchr("vrx", outvals[0]))) error(USER, "color format only with -ov, -or, -ox"); putreal = putrgbe; break; default: error(CONSISTENCY, "botched output format"); } if (nproc > 1) { /* start multiprocessing */ ray_popen(nproc); ray_fifo_out = printvals; } if (hresolu > 0) { if (vresolu > 0) fprtresolu(hresolu, vresolu, stdout); else fflush(stdout); } /* process input rays */ while ((d = nextray(orig, direc)) >= 0.0) { if (d == 0.0) { /* flush request? */ if (something2flush) { if (ray_pnprocs > 1 && ray_fifo_flush() < 0) error(USER, "child(ren) died"); bogusray(); fflush(stdout); nextflush = (!vresolu | (hresolu <= 1)) * hresolu; something2flush = 0; } else bogusray(); } else { /* compute and print */ rtcompute(orig, direc, lim_dist ? d : 0.0); if (!--nextflush) { /* flush if time */ if (ray_pnprocs > 1 && ray_fifo_flush() < 0) error(USER, "child(ren) died"); fflush(stdout); nextflush = hresolu; } else something2flush = 1; } if (ferror(stdout)) error(SYSTEM, "write error"); if (vcount && !--vcount) /* check for end */ break; } if (ray_pnprocs > 1) { /* clean up children */ if (ray_fifo_flush() < 0) error(USER, "unable to complete processing"); ray_pclose(0); } if (vcount) error(WARNING, "unexpected EOF on input"); if (fflush(stdout) < 0) error(SYSTEM, "write error"); if (fname != NULL) { fclose(inpfp); inpfp = NULL; } nextray(NULL, NULL); } static void trace_sources(void) /* trace rays to light sources, also */ { int sn; for (sn = 0; sn < nsources; sn++) source[sn].sflags |= SFOLLOW; } static void setoutput( /* set up output tables */ char *vs ) { oputf_t **table = ray_out; castonly = 1; while (*vs) switch (*vs++) { case 'T': /* trace sources */ if (!*vs) break; trace_sources(); /* fall through */ case 't': /* trace */ if (!*vs) break; *table = NULL; table = every_out; trace = ourtrace; castonly = 0; break; case 'o': /* origin */ *table++ = oputo; break; case 'd': /* direction */ *table++ = oputd; break; case 'r': /* reflected contrib. */ *table++ = oputr; castonly = 0; break; case 'R': /* reflected distance */ *table++ = oputR; castonly = 0; break; case 'x': /* xmit contrib. */ *table++ = oputx; castonly = 0; break; case 'X': /* xmit distance */ *table++ = oputX; castonly = 0; break; case 'v': /* value */ *table++ = oputv; castonly = 0; break; case 'V': /* contribution */ *table++ = oputV; if (ambounce > 0 && (ambacc > FTINY || ambssamp > 0)) error(WARNING, "-otV accuracy depends on -aa 0 -as 0"); break; case 'l': /* effective distance */ *table++ = oputl; castonly = 0; break; case 'c': /* local coordinates */ *table++ = oputc; break; case 'L': /* single ray length */ *table++ = oputL; break; case 'p': /* point */ *table++ = oputp; break; case 'n': /* perturbed normal */ *table++ = oputn; castonly = 0; break; case 'N': /* unperturbed normal */ *table++ = oputN; break; case 's': /* surface */ *table++ = oputs; break; case 'w': /* weight */ *table++ = oputw; break; case 'W': /* coefficient */ *table++ = oputW; castonly = 0; if (ambounce > 0 && (ambacc > FTINY) | (ambssamp > 0)) error(WARNING, "-otW accuracy depends on -aa 0 -as 0"); break; case 'm': /* modifier */ *table++ = oputm; break; case 'M': /* material */ *table++ = oputM; break; case '~': /* tilde */ *table++ = oputtilde; break; } *table = NULL; /* compatibility */ for (table = ray_out; *table != NULL; table++) { if ((*table == oputV) | (*table == oputW)) error(WARNING, "-oVW options require trace mode"); if ((do_irrad | imm_irrad) && (*table == oputr) | (*table == oputR) | (*table == oputx) | (*table == oputX)) error(WARNING, "-orRxX options incompatible with -I+ and -i+"); } } static void bogusray(void) /* print out empty record */ { rayorigin(&thisray, PRIMARY, NULL, NULL); printvals(&thisray); } static void raycast( /* compute first ray intersection only */ RAY *r ) { if (!localhit(r, &thescene)) { if (r->ro == &Aftplane) { /* clipped */ r->ro = NULL; r->rot = FHUGE; } else sourcehit(r); } } static void rayirrad( /* compute irradiance rather than radiance */ RAY *r ) { void (*old_revf)(RAY *) = r->revf; /* pretend we hit surface */ r->rxt = r->rot = 1e-5; VSUM(r->rop, r->rorg, r->rdir, r->rot); r->ron[0] = -r->rdir[0]; r->ron[1] = -r->rdir[1]; r->ron[2] = -r->rdir[2]; r->rod = 1.0; /* compute result */ r->revf = raytrace; (*ofun[Lamb.otype].funp)(&Lamb, r); r->revf = old_revf; } static void rtcompute( /* compute and print ray value(s) */ FVECT org, FVECT dir, double dmax ) { /* set up ray */ rayorigin(&thisray, PRIMARY, NULL, NULL); if (imm_irrad) { VSUM(thisray.rorg, org, dir, 1.1e-4); thisray.rdir[0] = -dir[0]; thisray.rdir[1] = -dir[1]; thisray.rdir[2] = -dir[2]; thisray.rmax = 0.0; thisray.revf = rayirrad; } else { VCOPY(thisray.rorg, org); VCOPY(thisray.rdir, dir); thisray.rmax = dmax; if (castonly) thisray.revf = raycast; } if (ray_pnprocs > 1) { /* multiprocessing FIFO? */ if (ray_fifo_in(&thisray) < 0) error(USER, "lost children"); return; } samplendx++; /* else do it ourselves */ rayvalue(&thisray); printvals(&thisray); } static int printvals( /* print requested ray values */ RAY *r ) { oputf_t **tp; if (ray_out[0] == NULL) return(0); for (tp = ray_out; *tp != NULL; tp++) (**tp)(r); if (outform == 'a') putchar('\n'); return(1); } static int getvec( /* get a vector from fp */ FVECT vec, int fmt, FILE *fp ) { static float vf[3]; static double vd[3]; char buf[32]; int i; switch (fmt) { case 'a': /* ascii */ for (i = 0; i < 3; i++) { if (fgetword(buf, sizeof(buf), fp) == NULL || !isflt(buf)) return(-1); vec[i] = atof(buf); } break; case 'f': /* binary float */ if (getbinary(vf, sizeof(float), 3, fp) != 3) return(-1); VCOPY(vec, vf); break; case 'd': /* binary double */ if (getbinary(vd, sizeof(double), 3, fp) != 3) return(-1); VCOPY(vec, vd); break; default: error(CONSISTENCY, "botched input format"); } return(0); } static int iszerovec(const FVECT vec) { return (vec[0] == 0.0) & (vec[1] == 0.0) & (vec[2] == 0.0); } static double nextray( /* return next ray in work group (-1.0 if EOF) */ FVECT org, FVECT dir ) { const size_t qlength = !vresolu * hresolu; if ((org == NULL) | (dir == NULL)) { if (inp_queue != NULL) /* asking to free queue */ free(inp_queue); inp_queue = NULL; inp_qpos = inp_qend = 0; return(-1.); } if (!inp_qend) { /* initialize FIFO queue */ int rsiz = 6*20; /* conservative ascii ray size */ if (inform == 'f') rsiz = 6*sizeof(float); else if (inform == 'd') rsiz = 6*sizeof(double); if ((inpfp == stdin) & (qlength*rsiz > 512)) /* pipe limit */ inp_queue = (FVECT *)malloc(sizeof(FVECT)*2*qlength); inp_qend = -(inp_queue == NULL); /* flag for no queue */ } if (inp_qend < 0) { /* not queuing? */ if (getvec(org, inform, inpfp) < 0 || getvec(dir, inform, inpfp) < 0) return(-1.); return normalize(dir); } if (inp_qpos >= inp_qend) { /* need to refill input queue? */ for (inp_qend = 0; inp_qend < qlength; inp_qend++) { if (getvec(inp_queue[2*inp_qend], inform, inpfp) < 0 || getvec(inp_queue[2*inp_qend+1], inform, inpfp) < 0) break; /* hit EOF */ if (iszerovec(inp_queue[2*inp_qend+1])) { ++inp_qend; /* flush request */ break; } } inp_qpos = 0; } if (inp_qpos >= inp_qend) /* unexpected EOF? */ return(-1.); VCOPY(org, inp_queue[2*inp_qpos]); VCOPY(dir, inp_queue[2*inp_qpos+1]); ++inp_qpos; return normalize(dir); } void tranotify( /* record new modifier */ OBJECT obj ) { static int hitlimit = 0; OBJREC *o = objptr(obj); char **tralp; if (obj == OVOID) { /* starting over */ traset[0] = 0; hitlimit = 0; return; } if (hitlimit || !ismodifier(o->otype)) return; for (tralp = tralist; *tralp != NULL; tralp++) if (!strcmp(o->oname, *tralp)) { if (traset[0] >= MAXTSET) { error(WARNING, "too many modifiers in trace list"); hitlimit++; return; /* should this be fatal? */ } insertelem(traset, obj); return; } } static void ourtrace( /* print ray values */ RAY *r ) { oputf_t **tp; if (every_out[0] == NULL) return; if (r->ro == NULL) { if (traincl == 1) return; } else if (traincl != -1 && traincl != inset(traset, r->ro->omod)) return; tabin(r); for (tp = every_out; *tp != NULL; tp++) (**tp)(r); if (outform == 'a') putchar('\n'); } static void tabin( /* tab in appropriate amount */ RAY *r ) { const RAY *rp; for (rp = r->parent; rp != NULL; rp = rp->parent) putchar('\t'); } static void oputo( /* print origin */ RAY *r ) { (*putreal)(r->rorg, 3); } static void oputd( /* print direction */ RAY *r ) { (*putreal)(r->rdir, 3); } static void oputr( /* print mirrored contribution */ RAY *r ) { RREAL cval[3]; cval[0] = colval(r->mcol,RED); cval[1] = colval(r->mcol,GRN); cval[2] = colval(r->mcol,BLU); (*putreal)(cval, 3); } static void oputR( /* print mirrored distance */ RAY *r ) { (*putreal)(&r->rmt, 1); } static void oputx( /* print unmirrored contribution */ RAY *r ) { RREAL cval[3]; cval[0] = colval(r->rcol,RED) - colval(r->mcol,RED); cval[1] = colval(r->rcol,GRN) - colval(r->mcol,GRN); cval[2] = colval(r->rcol,BLU) - colval(r->mcol,BLU); (*putreal)(cval, 3); } static void oputX( /* print unmirrored distance */ RAY *r ) { (*putreal)(&r->rxt, 1); } static void oputv( /* print value */ RAY *r ) { RREAL cval[3]; cval[0] = colval(r->rcol,RED); cval[1] = colval(r->rcol,GRN); cval[2] = colval(r->rcol,BLU); (*putreal)(cval, 3); } static void oputV( /* print value contribution */ RAY *r ) { RREAL contr[3]; raycontrib(contr, r, PRIMARY); multcolor(contr, r->rcol); (*putreal)(contr, 3); } static void oputl( /* print effective distance */ RAY *r ) { RREAL d = raydistance(r); (*putreal)(&d, 1); } static void oputL( /* print single ray length */ RAY *r ) { (*putreal)(&r->rot, 1); } static void oputc( /* print local coordinates */ RAY *r ) { (*putreal)(r->uv, 2); } static RREAL vdummy[3] = {0.0, 0.0, 0.0}; static void oputp( /* print point */ RAY *r ) { if (r->rot < FHUGE*.99) (*putreal)(r->rop, 3); else (*putreal)(vdummy, 3); } static void oputN( /* print unperturbed normal */ RAY *r ) { if (r->rot < FHUGE*.99) { if (r->rflips & 1) { /* undo any flippin' flips */ FVECT unrm; unrm[0] = -r->ron[0]; unrm[1] = -r->ron[1]; unrm[2] = -r->ron[2]; (*putreal)(unrm, 3); } else (*putreal)(r->ron, 3); } else (*putreal)(vdummy, 3); } static void oputn( /* print perturbed normal */ RAY *r ) { FVECT pnorm; if (r->rot >= FHUGE*.99) { (*putreal)(vdummy, 3); return; } raynormal(pnorm, r); (*putreal)(pnorm, 3); } static void oputs( /* print name */ RAY *r ) { if (r->ro != NULL) fputs(r->ro->oname, stdout); else putchar('*'); putchar('\t'); } static void oputw( /* print weight */ RAY *r ) { RREAL rwt = r->rweight; (*putreal)(&rwt, 1); } static void oputW( /* print coefficient */ RAY *r ) { RREAL contr[3]; /* shadow ray not on source? */ if (r->rsrc >= 0 && source[r->rsrc].so != r->ro) setcolor(contr, 0.0, 0.0, 0.0); else raycontrib(contr, r, PRIMARY); (*putreal)(contr, 3); } static void oputm( /* print modifier */ RAY *r ) { if (r->ro != NULL) if (r->ro->omod != OVOID) fputs(objptr(r->ro->omod)->oname, stdout); else fputs(VOIDID, stdout); else putchar('*'); putchar('\t'); } static void oputM( /* print material */ RAY *r ) { OBJREC *mat; if (r->ro != NULL) { if ((mat = findmaterial(r->ro)) != NULL) fputs(mat->oname, stdout); else fputs(VOIDID, stdout); } else putchar('*'); putchar('\t'); } static void oputtilde( /* output tilde (spacer) */ RAY *r ) { fputs("~\t", stdout); } static void puta( /* print ascii value(s) */ RREAL *v, int n ) { if (n == 3) { printf("%e\t%e\t%e\t", v[0], v[1], v[2]); return; } while (n--) printf("%e\t", *v++); } static void putd(RREAL *v, int n) /* output binary double(s) */ { #ifdef SMLFLT double da[3]; int i; if (n > 3) error(INTERNAL, "code error in putd()"); for (i = n; i--; ) da[i] = v[i]; putbinary(da, sizeof(double), n, stdout); #else putbinary(v, sizeof(RREAL), n, stdout); #endif } static void putf(RREAL *v, int n) /* output binary float(s) */ { #ifndef SMLFLT float fa[3]; int i; if (n > 3) error(INTERNAL, "code error in putf()"); for (i = n; i--; ) fa[i] = v[i]; putbinary(fa, sizeof(float), n, stdout); #else putbinary(v, sizeof(RREAL), n, stdout); #endif } static void putrgbe(RREAL *v, int n) /* output RGBE color */ { COLR cout; if (n != 3) error(INTERNAL, "putrgbe() not called with 3 components"); setcolr(cout, v[0], v[1], v[2]); putbinary(cout, sizeof(cout), 1, stdout); }