1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: raytrace.c,v 2.95 2025/02/06 02:17:33 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* raytrace.c - routines for tracing and shading rays. |
6 |
* |
7 |
* External symbols declared in ray.h |
8 |
*/ |
9 |
|
10 |
#include "copyright.h" |
11 |
|
12 |
#include "ray.h" |
13 |
#include "source.h" |
14 |
#include "otypes.h" |
15 |
#include "otspecial.h" |
16 |
#include "random.h" |
17 |
#include "pmap.h" |
18 |
|
19 |
#define MAXCSET ((MAXSET+1)*2-1) /* maximum check set size */ |
20 |
|
21 |
RNUMBER raynum = 0; /* next unique ray number */ |
22 |
RNUMBER nrays = 0; /* number of calls to localhit */ |
23 |
|
24 |
static RREAL Lambfa[5] = {PI, PI, PI, 0.0, 0.0}; |
25 |
OBJREC Lamb = { |
26 |
OVOID, MAT_PLASTIC, "Lambertian", |
27 |
{NULL, Lambfa, 0, 5}, NULL |
28 |
}; /* a Lambertian surface */ |
29 |
|
30 |
OBJREC Aftplane; /* aft clipping plane object */ |
31 |
|
32 |
#define RAYHIT (-1) /* return value for intercepted ray */ |
33 |
|
34 |
static int raymove(FVECT pos, OBJECT *cxs, int dirf, RAY *r, CUBE *cu); |
35 |
static int checkhit(RAY *r, CUBE *cu, OBJECT *cxs); |
36 |
static void checkset(OBJECT *os, OBJECT *cs); |
37 |
|
38 |
|
39 |
int |
40 |
rayorigin( /* start new ray from old one */ |
41 |
RAY *r, |
42 |
int rt, |
43 |
const RAY *ro, |
44 |
const SCOLOR rc |
45 |
) |
46 |
{ |
47 |
double rw, re; |
48 |
/* assign coefficient/weight */ |
49 |
if (rc == NULL) { |
50 |
rw = 1.0; |
51 |
setscolor(r->rcoef, 1., 1., 1.); |
52 |
} else { |
53 |
rw = sintens((COLORV *)rc); |
54 |
if (rw > 1.0) |
55 |
rw = 1.0; /* avoid calculation growth */ |
56 |
if (rc != r->rcoef) |
57 |
copyscolor(r->rcoef, rc); |
58 |
} |
59 |
if ((r->parent = ro) == NULL) { /* primary ray */ |
60 |
r->rlvl = 0; |
61 |
r->rweight = rw; |
62 |
r->crtype = r->rtype = rt; |
63 |
r->rsrc = -1; |
64 |
r->clipset = NULL; |
65 |
r->revf = raytrace; |
66 |
copycolor(r->cext, cextinction); |
67 |
copycolor(r->albedo, salbedo); |
68 |
r->gecc = seccg; |
69 |
r->slights = NULL; |
70 |
} else { /* spawned ray */ |
71 |
if (ro->rot >= FHUGE*.99) { |
72 |
memset(r, 0, sizeof(RAY)); |
73 |
return(-1); /* illegal continuation */ |
74 |
} |
75 |
r->rlvl = ro->rlvl; |
76 |
r->rsrc = ro->rsrc; |
77 |
if (rt & RAYREFL) { |
78 |
r->rlvl++; |
79 |
if (r->rsrc >= 0) /* malfunctioning material? */ |
80 |
r->rsrc = -1; |
81 |
r->clipset = ro->clipset; |
82 |
r->rmax = 0.0; |
83 |
} else { |
84 |
r->clipset = ro->newcset; |
85 |
r->rmax = (ro->rmax > FTINY)*(ro->rmax - ro->rot); |
86 |
} |
87 |
r->revf = ro->revf; |
88 |
copycolor(r->cext, ro->cext); |
89 |
copycolor(r->albedo, ro->albedo); |
90 |
r->gecc = ro->gecc; |
91 |
r->slights = ro->slights; |
92 |
r->crtype = ro->crtype | (r->rtype = rt); |
93 |
VCOPY(r->rorg, ro->rop); |
94 |
r->rweight = ro->rweight * rw; |
95 |
/* estimate extinction */ |
96 |
re = colval(ro->cext,RED) < colval(ro->cext,GRN) ? |
97 |
colval(ro->cext,RED) : colval(ro->cext,GRN); |
98 |
if (colval(ro->cext,BLU) < re) re = colval(ro->cext,BLU); |
99 |
re *= ro->rot; |
100 |
if (re > 0.1) { |
101 |
if (re > 92.) { |
102 |
r->rweight = 0.0; |
103 |
} else { |
104 |
r->rweight *= exp(-re); |
105 |
} |
106 |
} |
107 |
} |
108 |
rayclear(r); |
109 |
if (r->rweight <= 0.0) /* check for expiration */ |
110 |
return(-1); |
111 |
if (r->crtype & SHADOW) /* shadow commitment */ |
112 |
return(0); |
113 |
/* ambient in photon map? */ |
114 |
if (ro != NULL && ro->crtype & AMBIENT) { |
115 |
if (causticPhotonMapping) |
116 |
return(-1); |
117 |
if (photonMapping && rt != TRANS) |
118 |
return(-1); |
119 |
} |
120 |
if ((maxdepth <= 0) & (rc != NULL)) { /* Russian roulette */ |
121 |
if (minweight <= 0.0) |
122 |
error(USER, "zero ray weight in Russian roulette"); |
123 |
if ((maxdepth < 0) & (r->rlvl > -maxdepth)) |
124 |
return(-1); /* upper reflection limit */ |
125 |
if (r->rweight >= minweight) |
126 |
return(0); |
127 |
if (frandom() > r->rweight/minweight) |
128 |
return(-1); |
129 |
rw = minweight/r->rweight; /* promote survivor */ |
130 |
scalescolor(r->rcoef, rw); |
131 |
r->rweight = minweight; |
132 |
return(0); |
133 |
} |
134 |
return((r->rweight >= minweight) & (r->rlvl <= abs(maxdepth)) ? 0 : -1); |
135 |
} |
136 |
|
137 |
|
138 |
void |
139 |
rayclear( /* clear a ray for (re)evaluation */ |
140 |
RAY *r |
141 |
) |
142 |
{ |
143 |
r->rno = raynum++; |
144 |
r->newcset = r->clipset; |
145 |
r->hitf = rayhit; |
146 |
r->robj = OVOID; |
147 |
r->ro = NULL; |
148 |
r->rox = NULL; |
149 |
r->rxt = r->rmt = r->rot = FHUGE; |
150 |
VCOPY(r->rop, r->rorg); |
151 |
r->ron[0] = -r->rdir[0]; r->ron[1] = -r->rdir[1]; r->ron[2] = -r->rdir[2]; |
152 |
r->rod = 1.0; |
153 |
r->pert[0] = r->pert[1] = r->pert[2] = 0.0; |
154 |
r->rflips = 0; |
155 |
r->uv[0] = r->uv[1] = 0.0; |
156 |
setscolor(r->pcol, 1.0, 1.0, 1.0); |
157 |
scolorblack(r->mcol); |
158 |
scolorblack(r->rcol); |
159 |
} |
160 |
|
161 |
|
162 |
void |
163 |
raytrace( /* trace a ray and compute its value */ |
164 |
RAY *r |
165 |
) |
166 |
{ |
167 |
if (localhit(r, &thescene)) |
168 |
raycont(r); /* hit local surface, evaluate */ |
169 |
else if (r->ro == &Aftplane) { |
170 |
r->ro = NULL; /* hit aft clipping plane */ |
171 |
r->rot = FHUGE; |
172 |
} else if (sourcehit(r)) |
173 |
rayshade(r, r->ro->omod); /* distant source */ |
174 |
|
175 |
if (trace != NULL) |
176 |
(*trace)(r); /* trace execution */ |
177 |
|
178 |
rayparticipate(r); /* for participating medium */ |
179 |
} |
180 |
|
181 |
|
182 |
void |
183 |
raycont( /* check for clipped object and continue */ |
184 |
RAY *r |
185 |
) |
186 |
{ |
187 |
if ((r->clipset != NULL && inset(r->clipset, r->ro->omod)) || |
188 |
!rayshade(r, r->ro->omod)) |
189 |
raytrans(r); |
190 |
} |
191 |
|
192 |
|
193 |
void |
194 |
raytrans( /* transmit ray as is */ |
195 |
RAY *r |
196 |
) |
197 |
{ |
198 |
RAY tr; |
199 |
|
200 |
rayorigin(&tr, TRANS, r, NULL); /* always continue */ |
201 |
VCOPY(tr.rdir, r->rdir); |
202 |
rayvalue(&tr); |
203 |
copyscolor(r->mcol, tr.mcol); |
204 |
copyscolor(r->rcol, tr.rcol); |
205 |
r->rmt = r->rot + tr.rmt; |
206 |
r->rxt = r->rot + tr.rxt; |
207 |
} |
208 |
|
209 |
|
210 |
int |
211 |
raytirrad( /* irradiance hack */ |
212 |
OBJREC *m, |
213 |
RAY *r |
214 |
) |
215 |
{ |
216 |
if (m->otype != MAT_CLIP && ismaterial(m->otype)) { |
217 |
if (istransp(m) || isBSDFproxy(m)) { |
218 |
raytrans(r); |
219 |
return(1); |
220 |
} |
221 |
if (!islight(m->otype)) { |
222 |
setscolor(r->pcol, 1.0, 1.0, 1.0); |
223 |
return((*ofun[Lamb.otype].funp)(&Lamb, r)); |
224 |
} |
225 |
} |
226 |
return(0); /* not a qualifying surface */ |
227 |
} |
228 |
|
229 |
|
230 |
int |
231 |
rayshade( /* shade ray r with material mod */ |
232 |
RAY *r, |
233 |
int mod |
234 |
) |
235 |
{ |
236 |
int tst_irrad = do_irrad && !(r->crtype & ~(PRIMARY|TRANS)); |
237 |
OBJREC *m; |
238 |
|
239 |
r->rxt = r->rot; /* preset effective ray length */ |
240 |
for ( ; mod != OVOID; mod = m->omod) { |
241 |
m = objptr(mod); |
242 |
/****** unnecessary test since modifier() is always called |
243 |
if (!ismodifier(m->otype)) { |
244 |
sprintf(errmsg, "illegal modifier \"%s\"", m->oname); |
245 |
error(USER, errmsg); |
246 |
} |
247 |
******/ |
248 |
/* hack for irradiance calculation */ |
249 |
if (tst_irrad && raytirrad(m, r)) |
250 |
return(1); |
251 |
|
252 |
if ((*ofun[m->otype].funp)(m, r)) |
253 |
return(1); /* materials call raytexture() */ |
254 |
} |
255 |
return(0); /* no material! */ |
256 |
} |
257 |
|
258 |
|
259 |
void |
260 |
rayparticipate( /* compute ray medium participation */ |
261 |
RAY *r |
262 |
) |
263 |
{ |
264 |
SCOLOR ce, ca; |
265 |
double re, ge, be; |
266 |
|
267 |
if (intens(r->cext) <= 1./FHUGE) |
268 |
return; /* no medium */ |
269 |
re = r->rot*colval(r->cext,RED); |
270 |
ge = r->rot*colval(r->cext,GRN); |
271 |
be = r->rot*colval(r->cext,BLU); |
272 |
if (r->crtype & SHADOW) { /* no scattering for sources */ |
273 |
re *= 1. - colval(r->albedo,RED); |
274 |
ge *= 1. - colval(r->albedo,GRN); |
275 |
be *= 1. - colval(r->albedo,BLU); |
276 |
} |
277 |
setscolor(ce, re<=FTINY ? 1. : re>92. ? 0. : exp(-re), |
278 |
ge<=FTINY ? 1. : ge>92. ? 0. : exp(-ge), |
279 |
be<=FTINY ? 1. : be>92. ? 0. : exp(-be)); |
280 |
smultscolor(r->rcol, ce); /* path extinction */ |
281 |
if (r->crtype & SHADOW || intens(r->albedo) <= FTINY) |
282 |
return; /* no scattering */ |
283 |
|
284 |
/* PMAP: indirect inscattering accounted for by volume photons? */ |
285 |
if (!volumePhotonMapping) { |
286 |
setscolor(ca, |
287 |
colval(r->albedo,RED)*colval(ambval,RED)*(1.-scolval(ce,RED)), |
288 |
colval(r->albedo,GRN)*colval(ambval,GRN)*(1.-scolval(ce,GRN)), |
289 |
colval(r->albedo,BLU)*colval(ambval,BLU)*(1.-scolval(ce,BLU))); |
290 |
saddscolor(r->rcol, ca); /* ambient in scattering */ |
291 |
} |
292 |
|
293 |
srcscatter(r); /* source in scattering */ |
294 |
} |
295 |
|
296 |
|
297 |
void |
298 |
raytexture( /* get material modifiers */ |
299 |
RAY *r, |
300 |
OBJECT mod |
301 |
) |
302 |
{ |
303 |
OBJREC *m; |
304 |
/* execute textures and patterns */ |
305 |
for ( ; mod != OVOID; mod = m->omod) { |
306 |
m = objptr(mod); |
307 |
/****** unnecessary test since modifier() is always called |
308 |
if (!ismodifier(m->otype)) { |
309 |
sprintf(errmsg, "illegal modifier \"%s\"", m->oname); |
310 |
error(USER, errmsg); |
311 |
} |
312 |
******/ |
313 |
if ((*ofun[m->otype].funp)(m, r)) { |
314 |
sprintf(errmsg, "conflicting material \"%s\"", |
315 |
m->oname); |
316 |
objerror(r->ro, USER, errmsg); |
317 |
} |
318 |
} |
319 |
} |
320 |
|
321 |
|
322 |
int |
323 |
raymixture( /* mix modifiers */ |
324 |
RAY *r, |
325 |
OBJECT fore, |
326 |
OBJECT back, |
327 |
double coef |
328 |
) |
329 |
{ |
330 |
RAY fr, br; |
331 |
double mfore, mback; |
332 |
int foremat, backmat; |
333 |
int i; |
334 |
/* bound coefficient */ |
335 |
if (coef > 1.0) |
336 |
coef = 1.0; |
337 |
else if (coef < 0.0) |
338 |
coef = 0.0; |
339 |
/* compute foreground and background */ |
340 |
foremat = backmat = 0; |
341 |
/* foreground */ |
342 |
fr = *r; |
343 |
if (coef > FTINY) { |
344 |
fr.rweight *= coef; |
345 |
scalescolor(fr.rcoef, coef); |
346 |
foremat = rayshade(&fr, fore); |
347 |
} |
348 |
/* background */ |
349 |
br = *r; |
350 |
if (coef < 1.0-FTINY) { |
351 |
br.rweight *= 1.0-coef; |
352 |
scalescolor(br.rcoef, 1.0-coef); |
353 |
backmat = rayshade(&br, back); |
354 |
} |
355 |
/* check for transparency */ |
356 |
if (backmat ^ foremat) { |
357 |
if (backmat && coef > FTINY) |
358 |
raytrans(&fr); |
359 |
else if (foremat && coef < 1.0-FTINY) |
360 |
raytrans(&br); |
361 |
} |
362 |
/* mix perturbations */ |
363 |
for (i = 0; i < 3; i++) |
364 |
r->pert[i] = coef*fr.pert[i] + (1.0-coef)*br.pert[i]; |
365 |
/* mix pattern colors */ |
366 |
scalescolor(fr.pcol, coef); |
367 |
scalescolor(br.pcol, 1.0-coef); |
368 |
copyscolor(r->pcol, fr.pcol); |
369 |
saddscolor(r->pcol, br.pcol); |
370 |
/* return value tells if material */ |
371 |
if (!foremat & !backmat) |
372 |
return(0); |
373 |
/* mix returned ray values */ |
374 |
scalescolor(fr.rcol, coef); |
375 |
scalescolor(br.rcol, 1.0-coef); |
376 |
copyscolor(r->rcol, fr.rcol); |
377 |
saddscolor(r->rcol, br.rcol); |
378 |
scalescolor(fr.mcol, coef); |
379 |
scalescolor(br.mcol, 1.0-coef); |
380 |
copyscolor(r->mcol, fr.mcol); |
381 |
saddscolor(r->mcol, br.mcol); |
382 |
mfore = pbright(fr.mcol); mback = pbright(br.mcol); |
383 |
r->rmt = mfore > mback ? fr.rmt : br.rmt; |
384 |
r->rxt = pbright(fr.rcol)-mfore > pbright(br.rcol)-mback ? |
385 |
fr.rxt : br.rxt; |
386 |
return(1); |
387 |
} |
388 |
|
389 |
|
390 |
double |
391 |
raydist( /* compute (cumulative) ray distance */ |
392 |
const RAY *r, |
393 |
int flags |
394 |
) |
395 |
{ |
396 |
double sum = 0.0; |
397 |
|
398 |
while (r != NULL && r->crtype&flags) { |
399 |
sum += r->rot; |
400 |
r = r->parent; |
401 |
} |
402 |
return(sum); |
403 |
} |
404 |
|
405 |
|
406 |
void |
407 |
raycontrib( /* compute (cumulative) ray contribution */ |
408 |
SCOLOR rc, |
409 |
const RAY *r, |
410 |
int flags |
411 |
) |
412 |
{ |
413 |
static int warnedPM = 0; |
414 |
double re, ge, be; |
415 |
SCOLOR ce; |
416 |
|
417 |
setscolor(rc, 1., 1., 1.); |
418 |
re = ge = be = 0.; |
419 |
|
420 |
while (r != NULL && r->crtype&flags) { |
421 |
/* include this ray coefficient */ |
422 |
smultscolor(rc, r->rcoef); |
423 |
/* check participating medium */ |
424 |
if (!warnedPM && bright(r->albedo) > FTINY) { |
425 |
error(WARNING, |
426 |
"ray contribution calculation does not support participating media"); |
427 |
warnedPM++; |
428 |
} |
429 |
/* sum PM extinction */ |
430 |
re += r->rot*colval(r->cext,RED); |
431 |
ge += r->rot*colval(r->cext,GRN); |
432 |
be += r->rot*colval(r->cext,BLU); |
433 |
/* descend the tree */ |
434 |
r = r->parent; |
435 |
} |
436 |
/* cumulative extinction */ |
437 |
setscolor(ce, re<=FTINY ? 1. : re>92. ? 0. : exp(-re), |
438 |
ge<=FTINY ? 1. : ge>92. ? 0. : exp(-ge), |
439 |
be<=FTINY ? 1. : be>92. ? 0. : exp(-be)); |
440 |
smultscolor(rc, ce); |
441 |
} |
442 |
|
443 |
|
444 |
double |
445 |
raynormal( /* compute perturbed normal for ray */ |
446 |
FVECT norm, |
447 |
RAY *r |
448 |
) |
449 |
{ |
450 |
double newdot; |
451 |
int i; |
452 |
|
453 |
/* The perturbation is added to the surface normal to obtain |
454 |
* the new normal. If the new normal would affect the surface |
455 |
* orientation wrt. the ray, a correction is made. The method is |
456 |
* still fraught with problems since reflected rays and similar |
457 |
* directions calculated from the surface normal may spawn rays behind |
458 |
* the surface. The only solution is to curb textures at high |
459 |
* incidence (namely, keep DOT(rdir,pert) < Rdot). |
460 |
*/ |
461 |
|
462 |
for (i = 0; i < 3; i++) |
463 |
norm[i] = r->ron[i] + r->pert[i]; |
464 |
|
465 |
if (normalize(norm) == 0.0) { |
466 |
objerror(r->ro, WARNING, "illegal normal perturbation"); |
467 |
VCOPY(norm, r->ron); |
468 |
return(r->rod); |
469 |
} |
470 |
newdot = -DOT(norm, r->rdir); |
471 |
if ((newdot > 0.0) ^ (r->rod > 0.0)) { /* fix orientation */ |
472 |
for (i = 0; i < 3; i++) |
473 |
norm[i] += 2.0*newdot*r->rdir[i]; |
474 |
newdot = -newdot; |
475 |
} |
476 |
return(newdot); |
477 |
} |
478 |
|
479 |
|
480 |
void |
481 |
newrayxf( /* get new tranformation matrix for ray */ |
482 |
RAY *r |
483 |
) |
484 |
{ |
485 |
static struct xfn { |
486 |
struct xfn *next; |
487 |
FULLXF xf; |
488 |
} xfseed = { &xfseed }, *xflast = &xfseed; |
489 |
struct xfn *xp; |
490 |
const RAY *rp; |
491 |
|
492 |
/* |
493 |
* Search for transform in circular list that |
494 |
* has no associated ray in the tree. |
495 |
*/ |
496 |
xp = xflast; |
497 |
for (rp = r->parent; rp != NULL; rp = rp->parent) |
498 |
if (rp->rox == &xp->xf) { /* xp in use */ |
499 |
xp = xp->next; /* move to next */ |
500 |
if (xp == xflast) { /* need new one */ |
501 |
xp = (struct xfn *)bmalloc(sizeof(struct xfn)); |
502 |
if (xp == NULL) |
503 |
error(SYSTEM, |
504 |
"out of memory in newrayxf"); |
505 |
/* insert in list */ |
506 |
xp->next = xflast->next; |
507 |
xflast->next = xp; |
508 |
break; /* we're done */ |
509 |
} |
510 |
rp = r; /* start check over */ |
511 |
} |
512 |
/* got it */ |
513 |
r->rox = &xp->xf; |
514 |
xflast = xp; |
515 |
} |
516 |
|
517 |
|
518 |
void |
519 |
flipsurface( /* reverse surface orientation */ |
520 |
RAY *r |
521 |
) |
522 |
{ |
523 |
r->rod = -r->rod; |
524 |
r->ron[0] = -r->ron[0]; |
525 |
r->ron[1] = -r->ron[1]; |
526 |
r->ron[2] = -r->ron[2]; |
527 |
r->pert[0] = -r->pert[0]; |
528 |
r->pert[1] = -r->pert[1]; |
529 |
r->pert[2] = -r->pert[2]; |
530 |
r->rflips++; |
531 |
} |
532 |
|
533 |
|
534 |
int |
535 |
rayreject( /* check if candidate hit is worse than current */ |
536 |
OBJREC *o, |
537 |
RAY *r, |
538 |
double t, |
539 |
double rod |
540 |
) |
541 |
{ |
542 |
OBJREC *mnew, *mray; |
543 |
|
544 |
if ((t <= FTINY) | (t > r->rot + FTINY)) |
545 |
return(1); |
546 |
if (t < r->rot - FTINY) /* is new hit significantly closer? */ |
547 |
return(0); |
548 |
/* coincident point, so decide... */ |
549 |
if (o == r->ro) |
550 |
return(1); /* shouldn't happen */ |
551 |
if (r->ro == NULL) |
552 |
return(0); /* ditto */ |
553 |
mnew = findmaterial(o); |
554 |
mray = findmaterial(r->ro); /* check material transparencies */ |
555 |
if (mnew == NULL) { |
556 |
if (mray != NULL) |
557 |
return(1); /* old has material, new does not */ |
558 |
} else if (mray == NULL) { |
559 |
return(0); /* new has material, old does not */ |
560 |
} else if (istransp(mnew)) { |
561 |
if (!istransp(mray)) |
562 |
return(1); /* new is transparent, old is not */ |
563 |
} else if (istransp(mray)) { |
564 |
return(0); /* old is transparent, new is not */ |
565 |
} |
566 |
if (rod <= 0) { /* check which side we hit */ |
567 |
if (r->rod > 0) |
568 |
return(1); /* old hit front, new did not */ |
569 |
} else if (r->rod <= 0) { |
570 |
return(0); /* new hit front, old did not */ |
571 |
} |
572 |
/* earlier modifier definition wins tie */ |
573 |
return (r->ro->omod >= o->omod); |
574 |
} |
575 |
|
576 |
void |
577 |
rayhit( /* standard ray hit test */ |
578 |
OBJECT *oset, |
579 |
RAY *r |
580 |
) |
581 |
{ |
582 |
OBJREC *o; |
583 |
int i; |
584 |
|
585 |
for (i = oset[0]; i > 0; i--) { |
586 |
o = objptr(oset[i]); |
587 |
if ((*ofun[o->otype].funp)(o, r)) |
588 |
r->robj = oset[i]; |
589 |
} |
590 |
} |
591 |
|
592 |
|
593 |
int |
594 |
localhit( /* check for hit in the octree */ |
595 |
RAY *r, |
596 |
CUBE *scene |
597 |
) |
598 |
{ |
599 |
OBJECT cxset[MAXCSET+1]; /* set of checked objects */ |
600 |
FVECT curpos; /* current cube position */ |
601 |
int sflags; /* sign flags */ |
602 |
double t, dt; |
603 |
int i; |
604 |
|
605 |
nrays++; /* increment trace counter */ |
606 |
sflags = 0; |
607 |
for (i = 0; i < 3; i++) { |
608 |
curpos[i] = r->rorg[i]; |
609 |
if (r->rdir[i] > 1e-7) |
610 |
sflags |= 1 << i; |
611 |
else if (r->rdir[i] < -1e-7) |
612 |
sflags |= 0x10 << i; |
613 |
} |
614 |
if (!sflags) { |
615 |
error(WARNING, "zero ray direction in localhit"); |
616 |
return(0); |
617 |
} |
618 |
/* start off assuming nothing hit */ |
619 |
if (r->rmax > FTINY) { /* except aft plane if one */ |
620 |
r->ro = &Aftplane; |
621 |
r->rot = r->rmax; |
622 |
VSUM(r->rop, r->rorg, r->rdir, r->rot); |
623 |
} |
624 |
/* find global cube entrance point */ |
625 |
t = 0.0; |
626 |
if (!incube(scene, curpos)) { |
627 |
/* find distance to entry */ |
628 |
for (i = 0; i < 3; i++) { |
629 |
/* plane in our direction */ |
630 |
if (sflags & 1<<i) |
631 |
dt = scene->cuorg[i]; |
632 |
else if (sflags & 0x10<<i) |
633 |
dt = scene->cuorg[i] + scene->cusize; |
634 |
else |
635 |
continue; |
636 |
/* distance to the plane */ |
637 |
dt = (dt - r->rorg[i])/r->rdir[i]; |
638 |
if (dt > t) |
639 |
t = dt; /* farthest face is the one */ |
640 |
} |
641 |
t += FTINY; /* fudge to get inside cube */ |
642 |
if (t >= r->rot) /* clipped already */ |
643 |
return(0); |
644 |
/* advance position */ |
645 |
VSUM(curpos, curpos, r->rdir, t); |
646 |
|
647 |
if (!incube(scene, curpos)) /* non-intersecting ray */ |
648 |
return(0); |
649 |
} |
650 |
cxset[0] = 0; |
651 |
raymove(curpos, cxset, sflags, r, scene); |
652 |
return((r->ro != NULL) & (r->ro != &Aftplane)); |
653 |
} |
654 |
|
655 |
|
656 |
static int |
657 |
raymove( /* check for hit as we move */ |
658 |
FVECT pos, /* current position, modified herein */ |
659 |
OBJECT *cxs, /* checked objects, modified by checkhit */ |
660 |
int dirf, /* direction indicators to speed tests */ |
661 |
RAY *r, |
662 |
CUBE *cu |
663 |
) |
664 |
{ |
665 |
int ax; |
666 |
double dt, t; |
667 |
|
668 |
if (istree(cu->cutree)) { /* recurse on subcubes */ |
669 |
CUBE cukid; |
670 |
int br, sgn; |
671 |
|
672 |
cukid.cusize = cu->cusize * 0.5; /* find subcube */ |
673 |
VCOPY(cukid.cuorg, cu->cuorg); |
674 |
br = 0; |
675 |
if (pos[0] >= cukid.cuorg[0]+cukid.cusize) { |
676 |
cukid.cuorg[0] += cukid.cusize; |
677 |
br |= 1; |
678 |
} |
679 |
if (pos[1] >= cukid.cuorg[1]+cukid.cusize) { |
680 |
cukid.cuorg[1] += cukid.cusize; |
681 |
br |= 2; |
682 |
} |
683 |
if (pos[2] >= cukid.cuorg[2]+cukid.cusize) { |
684 |
cukid.cuorg[2] += cukid.cusize; |
685 |
br |= 4; |
686 |
} |
687 |
for ( ; ; ) { |
688 |
cukid.cutree = octkid(cu->cutree, br); |
689 |
if ((ax = raymove(pos,cxs,dirf,r,&cukid)) == RAYHIT) |
690 |
return(RAYHIT); |
691 |
sgn = 1 << ax; |
692 |
if (sgn & dirf) /* positive axis? */ |
693 |
if (sgn & br) |
694 |
return(ax); /* overflow */ |
695 |
else { |
696 |
cukid.cuorg[ax] += cukid.cusize; |
697 |
br |= sgn; |
698 |
} |
699 |
else |
700 |
if (sgn & br) { |
701 |
cukid.cuorg[ax] -= cukid.cusize; |
702 |
br &= ~sgn; |
703 |
} else |
704 |
return(ax); /* underflow */ |
705 |
} |
706 |
/*NOTREACHED*/ |
707 |
} |
708 |
if (isfull(cu->cutree)) { |
709 |
if (checkhit(r, cu, cxs)) |
710 |
return(RAYHIT); |
711 |
} else if (r->ro == &Aftplane && incube(cu, r->rop)) |
712 |
return(RAYHIT); |
713 |
/* advance to next cube */ |
714 |
if (dirf&0x11) { |
715 |
dt = dirf&1 ? cu->cuorg[0] + cu->cusize : cu->cuorg[0]; |
716 |
t = (dt - pos[0])/r->rdir[0]; |
717 |
ax = 0; |
718 |
} else |
719 |
t = FHUGE; |
720 |
if (dirf&0x22) { |
721 |
dt = dirf&2 ? cu->cuorg[1] + cu->cusize : cu->cuorg[1]; |
722 |
dt = (dt - pos[1])/r->rdir[1]; |
723 |
if (dt < t) { |
724 |
t = dt; |
725 |
ax = 1; |
726 |
} |
727 |
} |
728 |
if (dirf&0x44) { |
729 |
dt = dirf&4 ? cu->cuorg[2] + cu->cusize : cu->cuorg[2]; |
730 |
dt = (dt - pos[2])/r->rdir[2]; |
731 |
if (dt < t) { |
732 |
t = dt; |
733 |
ax = 2; |
734 |
} |
735 |
} |
736 |
VSUM(pos, pos, r->rdir, t); |
737 |
return(ax); |
738 |
} |
739 |
|
740 |
|
741 |
static int |
742 |
checkhit( /* check for hit in full cube */ |
743 |
RAY *r, |
744 |
CUBE *cu, |
745 |
OBJECT *cxs |
746 |
) |
747 |
{ |
748 |
OBJECT oset[MAXSET+1]; |
749 |
|
750 |
objset(oset, cu->cutree); |
751 |
checkset(oset, cxs); /* avoid double-checking */ |
752 |
|
753 |
(*r->hitf)(oset, r); /* test for hit in set */ |
754 |
|
755 |
if (r->robj == OVOID) |
756 |
return(0); /* no scores yet */ |
757 |
|
758 |
return(incube(cu, r->rop)); /* hit OK if in current cube */ |
759 |
} |
760 |
|
761 |
|
762 |
static void |
763 |
checkset( /* modify checked set and set to check */ |
764 |
OBJECT *os, /* os' = os - cs */ |
765 |
OBJECT *cs /* cs' = cs + os */ |
766 |
) |
767 |
{ |
768 |
OBJECT cset[MAXCSET+MAXSET+1]; |
769 |
int i, j; |
770 |
int k; |
771 |
/* copy os in place, cset <- cs */ |
772 |
cset[0] = 0; |
773 |
k = 0; |
774 |
for (i = j = 1; i <= os[0]; i++) { |
775 |
while (j <= cs[0] && cs[j] < os[i]) |
776 |
cset[++cset[0]] = cs[j++]; |
777 |
if (j > cs[0] || os[i] != cs[j]) { /* object to check */ |
778 |
os[++k] = os[i]; |
779 |
cset[++cset[0]] = os[i]; |
780 |
} |
781 |
} |
782 |
if (!(os[0] = k)) /* new "to check" set size */ |
783 |
return; /* special case */ |
784 |
while (j <= cs[0]) /* get the rest of cs */ |
785 |
cset[++cset[0]] = cs[j++]; |
786 |
if (cset[0] > MAXCSET) /* truncate "checked" set if nec. */ |
787 |
cset[0] = MAXCSET; |
788 |
/* setcopy(cs, cset); */ /* copy cset back to cs */ |
789 |
os = cset; |
790 |
for (i = os[0]; i-- >= 0; ) |
791 |
*cs++ = *os++; |
792 |
} |