#ifndef lint static const char RCSid[] = "$Id: raytrace.c,v 2.84 2021/01/31 20:55:04 greg Exp $"; #endif /* * raytrace.c - routines for tracing and shading rays. * * External symbols declared in ray.h */ #include "copyright.h" #include "ray.h" #include "source.h" #include "otypes.h" #include "otspecial.h" #include "random.h" #include "pmap.h" #define MAXCSET ((MAXSET+1)*2-1) /* maximum check set size */ RNUMBER raynum = 0; /* next unique ray number */ RNUMBER nrays = 0; /* number of calls to localhit */ static RREAL Lambfa[5] = {PI, PI, PI, 0.0, 0.0}; OBJREC Lamb = { OVOID, MAT_PLASTIC, "Lambertian", {NULL, Lambfa, 0, 5}, NULL }; /* a Lambertian surface */ OBJREC Aftplane; /* aft clipping plane object */ #define RAYHIT (-1) /* return value for intercepted ray */ static int raymove(FVECT pos, OBJECT *cxs, int dirf, RAY *r, CUBE *cu); static int checkhit(RAY *r, CUBE *cu, OBJECT *cxs); static void checkset(OBJECT *os, OBJECT *cs); int rayorigin( /* start new ray from old one */ RAY *r, int rt, const RAY *ro, const COLOR rc ) { double rw, re; /* assign coefficient/weight */ if (rc == NULL) { rw = 1.0; setcolor(r->rcoef, 1., 1., 1.); } else { rw = intens(rc); if (rw > 1.0) rw = 1.0; /* avoid calculation growth */ if (rc != r->rcoef) copycolor(r->rcoef, rc); } if ((r->parent = ro) == NULL) { /* primary ray */ r->rlvl = 0; r->rweight = rw; r->crtype = r->rtype = rt; r->rsrc = -1; r->clipset = NULL; r->revf = raytrace; copycolor(r->cext, cextinction); copycolor(r->albedo, salbedo); r->gecc = seccg; r->slights = NULL; } else { /* spawned ray */ if (ro->rot >= FHUGE*.99) { memset(r, 0, sizeof(RAY)); return(-1); /* illegal continuation */ } r->rlvl = ro->rlvl; if (rt & RAYREFL) { r->rlvl++; r->rsrc = -1; r->clipset = ro->clipset; r->rmax = 0.0; } else { r->rsrc = ro->rsrc; r->clipset = ro->newcset; r->rmax = ro->rmax <= FTINY ? 0.0 : ro->rmax - ro->rot; } r->revf = ro->revf; copycolor(r->cext, ro->cext); copycolor(r->albedo, ro->albedo); r->gecc = ro->gecc; r->slights = ro->slights; r->crtype = ro->crtype | (r->rtype = rt); VCOPY(r->rorg, ro->rop); r->rweight = ro->rweight * rw; /* estimate extinction */ re = colval(ro->cext,RED) < colval(ro->cext,GRN) ? colval(ro->cext,RED) : colval(ro->cext,GRN); if (colval(ro->cext,BLU) < re) re = colval(ro->cext,BLU); re *= ro->rot; if (re > 0.1) { if (re > 92.) { r->rweight = 0.0; } else { r->rweight *= exp(-re); } } } rayclear(r); if (r->rweight <= 0.0) /* check for expiration */ return(-1); if (r->crtype & SHADOW) /* shadow commitment */ return(0); /* ambient in photon map? */ if (ro != NULL && ro->crtype & AMBIENT) { if (causticPhotonMapping) return(-1); if (photonMapping && rt != TRANS) return(-1); } if ((maxdepth <= 0) & (rc != NULL)) { /* Russian roulette */ if (minweight <= 0.0) error(USER, "zero ray weight in Russian roulette"); if ((maxdepth < 0) & (r->rlvl > -maxdepth)) return(-1); /* upper reflection limit */ if (r->rweight >= minweight) return(0); if (frandom() > r->rweight/minweight) return(-1); rw = minweight/r->rweight; /* promote survivor */ scalecolor(r->rcoef, rw); r->rweight = minweight; return(0); } return((r->rweight >= minweight) & (r->rlvl <= abs(maxdepth)) ? 0 : -1); } void rayclear( /* clear a ray for (re)evaluation */ RAY *r ) { r->rno = raynum++; r->newcset = r->clipset; r->hitf = rayhit; r->robj = OVOID; r->ro = NULL; r->rox = NULL; r->rxt = r->rmt = r->rot = FHUGE; VCOPY(r->rop, r->rorg); r->ron[0] = -r->rdir[0]; r->ron[1] = -r->rdir[1]; r->ron[2] = -r->rdir[2]; r->rod = 1.0; r->pert[0] = r->pert[1] = r->pert[2] = 0.0; r->rflips = 0; r->uv[0] = r->uv[1] = 0.0; setcolor(r->pcol, 1.0, 1.0, 1.0); setcolor(r->mcol, 0.0, 0.0, 0.0); setcolor(r->rcol, 0.0, 0.0, 0.0); } void raytrace( /* trace a ray and compute its value */ RAY *r ) { if (localhit(r, &thescene)) raycont(r); /* hit local surface, evaluate */ else if (r->ro == &Aftplane) { r->ro = NULL; /* hit aft clipping plane */ r->rot = FHUGE; } else if (sourcehit(r)) rayshade(r, r->ro->omod); /* distant source */ if (trace != NULL) (*trace)(r); /* trace execution */ rayparticipate(r); /* for participating medium */ } void raycont( /* check for clipped object and continue */ RAY *r ) { if ((r->clipset != NULL && inset(r->clipset, r->ro->omod)) || !rayshade(r, r->ro->omod)) raytrans(r); } void raytrans( /* transmit ray as is */ RAY *r ) { RAY tr; rayorigin(&tr, TRANS, r, NULL); /* always continue */ VCOPY(tr.rdir, r->rdir); rayvalue(&tr); copycolor(r->mcol, tr.mcol); copycolor(r->rcol, tr.rcol); r->rmt = r->rot + tr.rmt; r->rxt = r->rot + tr.rxt; } int raytirrad( /* irradiance hack */ OBJREC *m, RAY *r ) { if (ofun[m->otype].flags & (T_M|T_X) && m->otype != MAT_CLIP) { if (istransp(m->otype) || isBSDFproxy(m)) { raytrans(r); return(1); } if (!islight(m->otype)) return((*ofun[Lamb.otype].funp)(&Lamb, r)); } return(0); /* not a qualifying surface */ } int rayshade( /* shade ray r with material mod */ RAY *r, int mod ) { int tst_irrad = do_irrad && !(r->crtype & ~(PRIMARY|TRANS)); OBJREC *m; r->rxt = r->rot; /* preset effective ray length */ for ( ; mod != OVOID; mod = m->omod) { m = objptr(mod); /****** unnecessary test since modifier() is always called if (!ismodifier(m->otype)) { sprintf(errmsg, "illegal modifier \"%s\"", m->oname); error(USER, errmsg); } ******/ /* hack for irradiance calculation */ if (tst_irrad && raytirrad(m, r)) return(1); if ((*ofun[m->otype].funp)(m, r)) return(1); /* materials call raytexture() */ } return(0); /* no material! */ } void rayparticipate( /* compute ray medium participation */ RAY *r ) { COLOR ce, ca; double re, ge, be; if (intens(r->cext) <= 1./FHUGE) return; /* no medium */ re = r->rot*colval(r->cext,RED); ge = r->rot*colval(r->cext,GRN); be = r->rot*colval(r->cext,BLU); if (r->crtype & SHADOW) { /* no scattering for sources */ re *= 1. - colval(r->albedo,RED); ge *= 1. - colval(r->albedo,GRN); be *= 1. - colval(r->albedo,BLU); } setcolor(ce, re<=FTINY ? 1. : re>92. ? 0. : exp(-re), ge<=FTINY ? 1. : ge>92. ? 0. : exp(-ge), be<=FTINY ? 1. : be>92. ? 0. : exp(-be)); multcolor(r->rcol, ce); /* path extinction */ if (r->crtype & SHADOW || intens(r->albedo) <= FTINY) return; /* no scattering */ /* PMAP: indirect inscattering accounted for by volume photons? */ if (!volumePhotonMapping) { setcolor(ca, colval(r->albedo,RED)*colval(ambval,RED)*(1.-colval(ce,RED)), colval(r->albedo,GRN)*colval(ambval,GRN)*(1.-colval(ce,GRN)), colval(r->albedo,BLU)*colval(ambval,BLU)*(1.-colval(ce,BLU))); addcolor(r->rcol, ca); /* ambient in scattering */ } srcscatter(r); /* source in scattering */ } void raytexture( /* get material modifiers */ RAY *r, OBJECT mod ) { OBJREC *m; /* execute textures and patterns */ for ( ; mod != OVOID; mod = m->omod) { m = objptr(mod); /****** unnecessary test since modifier() is always called if (!ismodifier(m->otype)) { sprintf(errmsg, "illegal modifier \"%s\"", m->oname); error(USER, errmsg); } ******/ if ((*ofun[m->otype].funp)(m, r)) { sprintf(errmsg, "conflicting material \"%s\"", m->oname); objerror(r->ro, USER, errmsg); } } } int raymixture( /* mix modifiers */ RAY *r, OBJECT fore, OBJECT back, double coef ) { RAY fr, br; double mfore, mback; int foremat, backmat; int i; /* bound coefficient */ if (coef > 1.0) coef = 1.0; else if (coef < 0.0) coef = 0.0; /* compute foreground and background */ foremat = backmat = 0; /* foreground */ fr = *r; if (coef > FTINY) { fr.rweight *= coef; scalecolor(fr.rcoef, coef); foremat = rayshade(&fr, fore); } /* background */ br = *r; if (coef < 1.0-FTINY) { br.rweight *= 1.0-coef; scalecolor(br.rcoef, 1.0-coef); backmat = rayshade(&br, back); } /* check for transparency */ if (backmat ^ foremat) { if (backmat && coef > FTINY) raytrans(&fr); else if (foremat && coef < 1.0-FTINY) raytrans(&br); } /* mix perturbations */ for (i = 0; i < 3; i++) r->pert[i] = coef*fr.pert[i] + (1.0-coef)*br.pert[i]; /* mix pattern colors */ scalecolor(fr.pcol, coef); scalecolor(br.pcol, 1.0-coef); copycolor(r->pcol, fr.pcol); addcolor(r->pcol, br.pcol); /* return value tells if material */ if (!foremat & !backmat) return(0); /* mix returned ray values */ scalecolor(fr.rcol, coef); scalecolor(br.rcol, 1.0-coef); copycolor(r->rcol, fr.rcol); addcolor(r->rcol, br.rcol); scalecolor(fr.mcol, coef); scalecolor(br.mcol, 1.0-coef); copycolor(r->mcol, fr.mcol); addcolor(r->mcol, br.mcol); mfore = bright(fr.mcol); mback = bright(br.mcol); r->rmt = mfore > mback ? fr.rmt : br.rmt; r->rxt = bright(fr.rcol)-mfore > bright(br.rcol)-mback ? fr.rxt : br.rxt; return(1); } double raydist( /* compute (cumulative) ray distance */ const RAY *r, int flags ) { double sum = 0.0; while (r != NULL && r->crtype&flags) { sum += r->rot; r = r->parent; } return(sum); } void raycontrib( /* compute (cumulative) ray contribution */ RREAL rc[3], const RAY *r, int flags ) { static int warnedPM = 0; rc[0] = rc[1] = rc[2] = 1.; while (r != NULL && r->crtype&flags) { int i = 3; while (i--) rc[i] *= colval(r->rcoef,i); /* check for participating medium */ if (!warnedPM && (bright(r->cext) > FTINY) | (bright(r->albedo) > FTINY)) { error(WARNING, "ray contribution calculation does not support participating media"); warnedPM++; } r = r->parent; } } double raynormal( /* compute perturbed normal for ray */ FVECT norm, RAY *r ) { double newdot; int i; /* The perturbation is added to the surface normal to obtain * the new normal. If the new normal would affect the surface * orientation wrt. the ray, a correction is made. The method is * still fraught with problems since reflected rays and similar * directions calculated from the surface normal may spawn rays behind * the surface. The only solution is to curb textures at high * incidence (namely, keep DOT(rdir,pert) < Rdot). */ for (i = 0; i < 3; i++) norm[i] = r->ron[i] + r->pert[i]; if (normalize(norm) == 0.0) { objerror(r->ro, WARNING, "illegal normal perturbation"); VCOPY(norm, r->ron); return(r->rod); } newdot = -DOT(norm, r->rdir); if ((newdot > 0.0) != (r->rod > 0.0)) { /* fix orientation */ for (i = 0; i < 3; i++) norm[i] += 2.0*newdot*r->rdir[i]; newdot = -newdot; } return(newdot); } void newrayxf( /* get new tranformation matrix for ray */ RAY *r ) { static struct xfn { struct xfn *next; FULLXF xf; } xfseed = { &xfseed }, *xflast = &xfseed; struct xfn *xp; const RAY *rp; /* * Search for transform in circular list that * has no associated ray in the tree. */ xp = xflast; for (rp = r->parent; rp != NULL; rp = rp->parent) if (rp->rox == &xp->xf) { /* xp in use */ xp = xp->next; /* move to next */ if (xp == xflast) { /* need new one */ xp = (struct xfn *)bmalloc(sizeof(struct xfn)); if (xp == NULL) error(SYSTEM, "out of memory in newrayxf"); /* insert in list */ xp->next = xflast->next; xflast->next = xp; break; /* we're done */ } rp = r; /* start check over */ } /* got it */ r->rox = &xp->xf; xflast = xp; } void flipsurface( /* reverse surface orientation */ RAY *r ) { r->rod = -r->rod; r->ron[0] = -r->ron[0]; r->ron[1] = -r->ron[1]; r->ron[2] = -r->ron[2]; r->pert[0] = -r->pert[0]; r->pert[1] = -r->pert[1]; r->pert[2] = -r->pert[2]; r->rflips++; } int rayreject( /* check if candidate hit is worse than current */ OBJREC *o, RAY *r, double t ) { OBJREC *mnew, *mray; if ((t <= FTINY) | (t > r->rot + FTINY)) return(1); if (t < r->rot - FTINY) /* is new hit significantly closer? */ return(0); /* coincident point, so decide... */ if (o == r->ro) return(1); /* shouldn't happen */ if (r->ro == NULL) return(0); /* ditto */ if ((mnew = findmaterial(o)) == NULL) return(1); /* new has no material */ if ((mray = findmaterial(r->ro)) == NULL) return(0); /* old has no material(!) */ if (istransp(mnew->otype)) return(1); /* new is transparent */ if (istransp(mray->otype)) return(0); /* old is transparent */ /* weakest priority to later modifier definition */ return (r->ro->omod >= o->omod); } void rayhit( /* standard ray hit test */ OBJECT *oset, RAY *r ) { OBJREC *o; int i; for (i = oset[0]; i > 0; i--) { o = objptr(oset[i]); if ((*ofun[o->otype].funp)(o, r)) r->robj = oset[i]; } } int localhit( /* check for hit in the octree */ RAY *r, CUBE *scene ) { OBJECT cxset[MAXCSET+1]; /* set of checked objects */ FVECT curpos; /* current cube position */ int sflags; /* sign flags */ double t, dt; int i; nrays++; /* increment trace counter */ sflags = 0; for (i = 0; i < 3; i++) { curpos[i] = r->rorg[i]; if (r->rdir[i] > 1e-7) sflags |= 1 << i; else if (r->rdir[i] < -1e-7) sflags |= 0x10 << i; } if (!sflags) { error(WARNING, "zero ray direction in localhit"); return(0); } /* start off assuming nothing hit */ if (r->rmax > FTINY) { /* except aft plane if one */ r->ro = &Aftplane; r->rot = r->rmax; VSUM(r->rop, r->rorg, r->rdir, r->rot); } /* find global cube entrance point */ t = 0.0; if (!incube(scene, curpos)) { /* find distance to entry */ for (i = 0; i < 3; i++) { /* plane in our direction */ if (sflags & 1<cuorg[i]; else if (sflags & 0x10<cuorg[i] + scene->cusize; else continue; /* distance to the plane */ dt = (dt - r->rorg[i])/r->rdir[i]; if (dt > t) t = dt; /* farthest face is the one */ } t += FTINY; /* fudge to get inside cube */ if (t >= r->rot) /* clipped already */ return(0); /* advance position */ VSUM(curpos, curpos, r->rdir, t); if (!incube(scene, curpos)) /* non-intersecting ray */ return(0); } cxset[0] = 0; raymove(curpos, cxset, sflags, r, scene); return((r->ro != NULL) & (r->ro != &Aftplane)); } static int raymove( /* check for hit as we move */ FVECT pos, /* current position, modified herein */ OBJECT *cxs, /* checked objects, modified by checkhit */ int dirf, /* direction indicators to speed tests */ RAY *r, CUBE *cu ) { int ax; double dt, t; if (istree(cu->cutree)) { /* recurse on subcubes */ CUBE cukid; int br, sgn; cukid.cusize = cu->cusize * 0.5; /* find subcube */ VCOPY(cukid.cuorg, cu->cuorg); br = 0; if (pos[0] >= cukid.cuorg[0]+cukid.cusize) { cukid.cuorg[0] += cukid.cusize; br |= 1; } if (pos[1] >= cukid.cuorg[1]+cukid.cusize) { cukid.cuorg[1] += cukid.cusize; br |= 2; } if (pos[2] >= cukid.cuorg[2]+cukid.cusize) { cukid.cuorg[2] += cukid.cusize; br |= 4; } for ( ; ; ) { cukid.cutree = octkid(cu->cutree, br); if ((ax = raymove(pos,cxs,dirf,r,&cukid)) == RAYHIT) return(RAYHIT); sgn = 1 << ax; if (sgn & dirf) /* positive axis? */ if (sgn & br) return(ax); /* overflow */ else { cukid.cuorg[ax] += cukid.cusize; br |= sgn; } else if (sgn & br) { cukid.cuorg[ax] -= cukid.cusize; br &= ~sgn; } else return(ax); /* underflow */ } /*NOTREACHED*/ } if (isfull(cu->cutree)) { if (checkhit(r, cu, cxs)) return(RAYHIT); } else if (r->ro == &Aftplane && incube(cu, r->rop)) return(RAYHIT); /* advance to next cube */ if (dirf&0x11) { dt = dirf&1 ? cu->cuorg[0] + cu->cusize : cu->cuorg[0]; t = (dt - pos[0])/r->rdir[0]; ax = 0; } else t = FHUGE; if (dirf&0x22) { dt = dirf&2 ? cu->cuorg[1] + cu->cusize : cu->cuorg[1]; dt = (dt - pos[1])/r->rdir[1]; if (dt < t) { t = dt; ax = 1; } } if (dirf&0x44) { dt = dirf&4 ? cu->cuorg[2] + cu->cusize : cu->cuorg[2]; dt = (dt - pos[2])/r->rdir[2]; if (dt < t) { t = dt; ax = 2; } } VSUM(pos, pos, r->rdir, t); return(ax); } static int checkhit( /* check for hit in full cube */ RAY *r, CUBE *cu, OBJECT *cxs ) { OBJECT oset[MAXSET+1]; objset(oset, cu->cutree); checkset(oset, cxs); /* avoid double-checking */ (*r->hitf)(oset, r); /* test for hit in set */ if (r->robj == OVOID) return(0); /* no scores yet */ return(incube(cu, r->rop)); /* hit OK if in current cube */ } static void checkset( /* modify checked set and set to check */ OBJECT *os, /* os' = os - cs */ OBJECT *cs /* cs' = cs + os */ ) { OBJECT cset[MAXCSET+MAXSET+1]; int i, j; int k; /* copy os in place, cset <- cs */ cset[0] = 0; k = 0; for (i = j = 1; i <= os[0]; i++) { while (j <= cs[0] && cs[j] < os[i]) cset[++cset[0]] = cs[j++]; if (j > cs[0] || os[i] != cs[j]) { /* object to check */ os[++k] = os[i]; cset[++cset[0]] = os[i]; } } if (!(os[0] = k)) /* new "to check" set size */ return; /* special case */ while (j <= cs[0]) /* get the rest of cs */ cset[++cset[0]] = cs[j++]; if (cset[0] > MAXCSET) /* truncate "checked" set if nec. */ cset[0] = MAXCSET; /* setcopy(cs, cset); */ /* copy cset back to cs */ os = cset; for (i = os[0]; i-- >= 0; ) *cs++ = *os++; }