ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raytrace.c
Revision: 2.27
Committed: Wed Apr 24 16:27:56 1996 UTC (28 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.26: +3 -6 lines
Log Message:
removed distance mung for FHUGE

File Contents

# Content
1 /* Copyright (c) 1996 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * raytrace.c - routines for tracing and shading rays.
9 *
10 * 8/7/85
11 */
12
13 #include "ray.h"
14
15 #include "octree.h"
16
17 #include "otypes.h"
18
19 #include "otspecial.h"
20
21 #define MAXCSET ((MAXSET+1)*2-1) /* maximum check set size */
22
23 extern CUBE thescene; /* our scene */
24 extern int maxdepth; /* maximum recursion depth */
25 extern double minweight; /* minimum ray weight */
26 extern int do_irrad; /* compute irradiance? */
27 extern COLOR ambval; /* ambient value */
28
29 extern COLOR cextinction; /* global extinction coefficient */
30 extern COLOR salbedo; /* global scattering albedo */
31 extern double seccg; /* global scattering eccentricity */
32 extern double ssampdist; /* scatter sampling distance */
33
34 unsigned long raynum = 0; /* next unique ray number */
35 unsigned long nrays = 0; /* number of calls to localhit */
36
37 static FLOAT Lambfa[5] = {PI, PI, PI, 0.0, 0.0};
38 OBJREC Lamb = {
39 OVOID, MAT_PLASTIC, "Lambertian",
40 {0, 5, NULL, Lambfa}, NULL,
41 }; /* a Lambertian surface */
42
43 OBJREC Aftplane; /* aft clipping plane object */
44
45 static int raymove(), checkset(), checkhit();
46
47 #define MAXLOOP 128 /* modifier loop detection */
48
49 #define RAYHIT (-1) /* return value for intercepted ray */
50
51
52 rayorigin(r, ro, rt, rw) /* start new ray from old one */
53 register RAY *r, *ro;
54 int rt;
55 double rw;
56 {
57 if ((r->parent = ro) == NULL) { /* primary ray */
58 r->rlvl = 0;
59 r->rweight = rw;
60 r->crtype = r->rtype = rt;
61 r->rsrc = -1;
62 r->clipset = NULL;
63 r->revf = raytrace;
64 copycolor(r->cext, cextinction);
65 copycolor(r->albedo, salbedo);
66 r->gecc = seccg;
67 r->slights = NULL;
68 } else { /* spawned ray */
69 r->rlvl = ro->rlvl;
70 if (rt & RAYREFL) {
71 r->rlvl++;
72 r->rsrc = -1;
73 r->clipset = ro->clipset;
74 r->rmax = 0.0;
75 } else {
76 r->rsrc = ro->rsrc;
77 r->clipset = ro->newcset;
78 r->rmax = ro->rmax <= FTINY ? 0.0 : ro->rmax - ro->rot;
79 }
80 r->revf = ro->revf;
81 copycolor(r->cext, ro->cext);
82 copycolor(r->albedo, ro->albedo);
83 r->gecc = ro->gecc;
84 r->slights = ro->slights;
85 r->rweight = ro->rweight * rw;
86 r->crtype = ro->crtype | (r->rtype = rt);
87 VCOPY(r->rorg, ro->rop);
88 }
89 rayclear(r);
90 return(r->rlvl <= maxdepth && r->rweight >= minweight ? 0 : -1);
91 }
92
93
94 rayclear(r) /* clear a ray for (re)evaluation */
95 register RAY *r;
96 {
97 r->rno = raynum++;
98 r->newcset = r->clipset;
99 r->ro = NULL;
100 r->rot = FHUGE;
101 r->pert[0] = r->pert[1] = r->pert[2] = 0.0;
102 setcolor(r->pcol, 1.0, 1.0, 1.0);
103 setcolor(r->rcol, 0.0, 0.0, 0.0);
104 r->rt = 0.0;
105 }
106
107
108 raytrace(r) /* trace a ray and compute its value */
109 RAY *r;
110 {
111 extern int (*trace)();
112
113 if (localhit(r, &thescene))
114 raycont(r); /* hit local surface, evaluate */
115 else if (r->ro == &Aftplane) {
116 r->ro = NULL; /* hit aft clipping plane */
117 r->rot = FHUGE;
118 } else if (sourcehit(r))
119 rayshade(r, r->ro->omod); /* distant source */
120
121 rayparticipate(r); /* for participating medium */
122
123 if (trace != NULL)
124 (*trace)(r); /* trace execution */
125 }
126
127
128 raycont(r) /* check for clipped object and continue */
129 register RAY *r;
130 {
131 if ((r->clipset != NULL && inset(r->clipset, r->ro->omod)) ||
132 !rayshade(r, r->ro->omod))
133 raytrans(r);
134 }
135
136
137 raytrans(r) /* transmit ray as is */
138 register RAY *r;
139 {
140 RAY tr;
141
142 if (rayorigin(&tr, r, TRANS, 1.0) == 0) {
143 VCOPY(tr.rdir, r->rdir);
144 rayvalue(&tr);
145 copycolor(r->rcol, tr.rcol);
146 r->rt = r->rot + tr.rt;
147 }
148 }
149
150
151 rayshade(r, mod) /* shade ray r with material mod */
152 register RAY *r;
153 int mod;
154 {
155 static int depth = 0;
156 int gotmat;
157 register OBJREC *m;
158 /* check for infinite loop */
159 if (depth++ >= MAXLOOP)
160 objerror(r->ro, USER, "possible modifier loop");
161 r->rt = r->rot; /* set effective ray length */
162 for (gotmat = 0; !gotmat && mod != OVOID; mod = m->omod) {
163 m = objptr(mod);
164 /****** unnecessary test since modifier() is always called
165 if (!ismodifier(m->otype)) {
166 sprintf(errmsg, "illegal modifier \"%s\"", m->oname);
167 error(USER, errmsg);
168 }
169 ******/
170 /* hack for irradiance calculation */
171 if (do_irrad && !(r->crtype & ~(PRIMARY|TRANS))) {
172 if (irr_ignore(m->otype)) {
173 depth--;
174 raytrans(r);
175 return(1);
176 }
177 if (!islight(m->otype))
178 m = &Lamb;
179 }
180 /* materials call raytexture */
181 gotmat = (*ofun[m->otype].funp)(m, r);
182 }
183 depth--;
184 return(gotmat);
185 }
186
187
188 rayparticipate(r) /* compute ray medium participation */
189 register RAY *r;
190 {
191 COLOR ce, ca;
192 double re, ge, be;
193
194 if (intens(r->cext) <= 1./FHUGE)
195 return; /* no medium */
196 re = r->rot*colval(r->cext,RED);
197 ge = r->rot*colval(r->cext,GRN);
198 be = r->rot*colval(r->cext,BLU);
199 if (r->crtype & SHADOW) { /* no scattering for sources */
200 re *= 1. - colval(r->albedo,RED);
201 ge *= 1. - colval(r->albedo,GRN);
202 be *= 1. - colval(r->albedo,BLU);
203 }
204 setcolor(ce, re<=0. ? 1. : re>92. ? 0. : exp(-re),
205 ge<=0. ? 1. : ge>92. ? 0. : exp(-ge),
206 be<=0. ? 1. : be>92. ? 0. : exp(-be));
207 multcolor(r->rcol, ce); /* path absorption */
208 if (r->crtype & SHADOW || intens(r->albedo) <= FTINY)
209 return; /* no scattering */
210 setcolor(ca,
211 colval(r->albedo,RED)*colval(ambval,RED)*(1.-colval(ce,RED)),
212 colval(r->albedo,GRN)*colval(ambval,GRN)*(1.-colval(ce,GRN)),
213 colval(r->albedo,BLU)*colval(ambval,BLU)*(1.-colval(ce,BLU)));
214 addcolor(r->rcol, ca); /* ambient in scattering */
215 srcscatter(r); /* source in scattering */
216 }
217
218
219 raytexture(r, mod) /* get material modifiers */
220 RAY *r;
221 int mod;
222 {
223 static int depth = 0;
224 register OBJREC *m;
225 /* check for infinite loop */
226 if (depth++ >= MAXLOOP)
227 objerror(r->ro, USER, "modifier loop");
228 /* execute textures and patterns */
229 for ( ; mod != OVOID; mod = m->omod) {
230 m = objptr(mod);
231 /****** unnecessary test since modifier() is always called
232 if (!ismodifier(m->otype)) {
233 sprintf(errmsg, "illegal modifier \"%s\"", m->oname);
234 error(USER, errmsg);
235 }
236 ******/
237 if ((*ofun[m->otype].funp)(m, r)) {
238 sprintf(errmsg, "conflicting material \"%s\"",
239 m->oname);
240 objerror(r->ro, USER, errmsg);
241 }
242 }
243 depth--; /* end here */
244 }
245
246
247 raymixture(r, fore, back, coef) /* mix modifiers */
248 register RAY *r;
249 OBJECT fore, back;
250 double coef;
251 {
252 RAY fr, br;
253 int foremat, backmat;
254 register int i;
255 /* bound coefficient */
256 if (coef > 1.0)
257 coef = 1.0;
258 else if (coef < 0.0)
259 coef = 0.0;
260 /* compute foreground and background */
261 foremat = backmat = 0;
262 /* foreground */
263 copystruct(&fr, r);
264 if (coef > FTINY)
265 foremat = rayshade(&fr, fore);
266 /* background */
267 copystruct(&br, r);
268 if (coef < 1.0-FTINY)
269 backmat = rayshade(&br, back);
270 /* check for transparency */
271 if (backmat ^ foremat)
272 if (backmat)
273 raytrans(&fr);
274 else
275 raytrans(&br);
276 /* mix perturbations */
277 for (i = 0; i < 3; i++)
278 r->pert[i] = coef*fr.pert[i] + (1.0-coef)*br.pert[i];
279 /* mix pattern colors */
280 scalecolor(fr.pcol, coef);
281 scalecolor(br.pcol, 1.0-coef);
282 copycolor(r->pcol, fr.pcol);
283 addcolor(r->pcol, br.pcol);
284 /* return value tells if material */
285 if (!foremat & !backmat)
286 return(0);
287 /* mix returned ray values */
288 scalecolor(fr.rcol, coef);
289 scalecolor(br.rcol, 1.0-coef);
290 copycolor(r->rcol, fr.rcol);
291 addcolor(r->rcol, br.rcol);
292 r->rt = bright(fr.rcol) > bright(br.rcol) ? fr.rt : br.rt;
293 return(1);
294 }
295
296
297 double
298 raydist(r, flags) /* compute (cumulative) ray distance */
299 register RAY *r;
300 register int flags;
301 {
302 double sum = 0.0;
303
304 while (r != NULL && r->crtype&flags) {
305 sum += r->rot;
306 r = r->parent;
307 }
308 return(sum);
309 }
310
311
312 double
313 raynormal(norm, r) /* compute perturbed normal for ray */
314 FVECT norm;
315 register RAY *r;
316 {
317 double newdot;
318 register int i;
319
320 /* The perturbation is added to the surface normal to obtain
321 * the new normal. If the new normal would affect the surface
322 * orientation wrt. the ray, a correction is made. The method is
323 * still fraught with problems since reflected rays and similar
324 * directions calculated from the surface normal may spawn rays behind
325 * the surface. The only solution is to curb textures at high
326 * incidence (namely, keep DOT(rdir,pert) < Rdot).
327 */
328
329 for (i = 0; i < 3; i++)
330 norm[i] = r->ron[i] + r->pert[i];
331
332 if (normalize(norm) == 0.0) {
333 objerror(r->ro, WARNING, "illegal normal perturbation");
334 VCOPY(norm, r->ron);
335 return(r->rod);
336 }
337 newdot = -DOT(norm, r->rdir);
338 if ((newdot > 0.0) != (r->rod > 0.0)) { /* fix orientation */
339 for (i = 0; i < 3; i++)
340 norm[i] += 2.0*newdot*r->rdir[i];
341 newdot = -newdot;
342 }
343 return(newdot);
344 }
345
346
347 newrayxf(r) /* get new tranformation matrix for ray */
348 RAY *r;
349 {
350 static struct xfn {
351 struct xfn *next;
352 FULLXF xf;
353 } xfseed = { &xfseed }, *xflast = &xfseed;
354 register struct xfn *xp;
355 register RAY *rp;
356
357 /*
358 * Search for transform in circular list that
359 * has no associated ray in the tree.
360 */
361 xp = xflast;
362 for (rp = r->parent; rp != NULL; rp = rp->parent)
363 if (rp->rox == &xp->xf) { /* xp in use */
364 xp = xp->next; /* move to next */
365 if (xp == xflast) { /* need new one */
366 xp = (struct xfn *)bmalloc(sizeof(struct xfn));
367 if (xp == NULL)
368 error(SYSTEM,
369 "out of memory in newrayxf");
370 /* insert in list */
371 xp->next = xflast->next;
372 xflast->next = xp;
373 break; /* we're done */
374 }
375 rp = r; /* start check over */
376 }
377 /* got it */
378 r->rox = &xp->xf;
379 xflast = xp;
380 }
381
382
383 flipsurface(r) /* reverse surface orientation */
384 register RAY *r;
385 {
386 r->rod = -r->rod;
387 r->ron[0] = -r->ron[0];
388 r->ron[1] = -r->ron[1];
389 r->ron[2] = -r->ron[2];
390 r->pert[0] = -r->pert[0];
391 r->pert[1] = -r->pert[1];
392 r->pert[2] = -r->pert[2];
393 }
394
395
396 localhit(r, scene) /* check for hit in the octree */
397 register RAY *r;
398 register CUBE *scene;
399 {
400 OBJECT cxset[MAXCSET+1]; /* set of checked objects */
401 FVECT curpos; /* current cube position */
402 int sflags; /* sign flags */
403 double t, dt;
404 register int i;
405
406 nrays++; /* increment trace counter */
407 sflags = 0;
408 for (i = 0; i < 3; i++) {
409 curpos[i] = r->rorg[i];
410 if (r->rdir[i] > 1e-7)
411 sflags |= 1 << i;
412 else if (r->rdir[i] < -1e-7)
413 sflags |= 0x10 << i;
414 }
415 if (sflags == 0)
416 error(CONSISTENCY, "zero ray direction in localhit");
417 /* start off assuming nothing hit */
418 if (r->rmax > FTINY) { /* except aft plane if one */
419 r->ro = &Aftplane;
420 r->rot = r->rmax;
421 for (i = 0; i < 3; i++)
422 r->rop[i] = r->rorg[i] + r->rot*r->rdir[i];
423 }
424 /* find global cube entrance point */
425 t = 0.0;
426 if (!incube(scene, curpos)) {
427 /* find distance to entry */
428 for (i = 0; i < 3; i++) {
429 /* plane in our direction */
430 if (sflags & 1<<i)
431 dt = scene->cuorg[i];
432 else if (sflags & 0x10<<i)
433 dt = scene->cuorg[i] + scene->cusize;
434 else
435 continue;
436 /* distance to the plane */
437 dt = (dt - r->rorg[i])/r->rdir[i];
438 if (dt > t)
439 t = dt; /* farthest face is the one */
440 }
441 t += FTINY; /* fudge to get inside cube */
442 if (t >= r->rot) /* clipped already */
443 return(0);
444 /* advance position */
445 for (i = 0; i < 3; i++)
446 curpos[i] += r->rdir[i]*t;
447
448 if (!incube(scene, curpos)) /* non-intersecting ray */
449 return(0);
450 }
451 cxset[0] = 0;
452 raymove(curpos, cxset, sflags, r, scene);
453 return(r->ro != NULL & r->ro != &Aftplane);
454 }
455
456
457 static int
458 raymove(pos, cxs, dirf, r, cu) /* check for hit as we move */
459 FVECT pos; /* current position, modified herein */
460 OBJECT *cxs; /* checked objects, modified by checkhit */
461 int dirf; /* direction indicators to speed tests */
462 register RAY *r;
463 register CUBE *cu;
464 {
465 int ax;
466 double dt, t;
467
468 if (istree(cu->cutree)) { /* recurse on subcubes */
469 CUBE cukid;
470 register int br, sgn;
471
472 cukid.cusize = cu->cusize * 0.5; /* find subcube */
473 VCOPY(cukid.cuorg, cu->cuorg);
474 br = 0;
475 if (pos[0] >= cukid.cuorg[0]+cukid.cusize) {
476 cukid.cuorg[0] += cukid.cusize;
477 br |= 1;
478 }
479 if (pos[1] >= cukid.cuorg[1]+cukid.cusize) {
480 cukid.cuorg[1] += cukid.cusize;
481 br |= 2;
482 }
483 if (pos[2] >= cukid.cuorg[2]+cukid.cusize) {
484 cukid.cuorg[2] += cukid.cusize;
485 br |= 4;
486 }
487 for ( ; ; ) {
488 cukid.cutree = octkid(cu->cutree, br);
489 if ((ax = raymove(pos,cxs,dirf,r,&cukid)) == RAYHIT)
490 return(RAYHIT);
491 sgn = 1 << ax;
492 if (sgn & dirf) /* positive axis? */
493 if (sgn & br)
494 return(ax); /* overflow */
495 else {
496 cukid.cuorg[ax] += cukid.cusize;
497 br |= sgn;
498 }
499 else
500 if (sgn & br) {
501 cukid.cuorg[ax] -= cukid.cusize;
502 br &= ~sgn;
503 } else
504 return(ax); /* underflow */
505 }
506 /*NOTREACHED*/
507 }
508 if (isfull(cu->cutree)) {
509 if (checkhit(r, cu, cxs))
510 return(RAYHIT);
511 } else if (r->ro == &Aftplane && incube(cu, r->rop))
512 return(RAYHIT);
513 /* advance to next cube */
514 if (dirf&0x11) {
515 dt = dirf&1 ? cu->cuorg[0] + cu->cusize : cu->cuorg[0];
516 t = (dt - pos[0])/r->rdir[0];
517 ax = 0;
518 } else
519 t = FHUGE;
520 if (dirf&0x22) {
521 dt = dirf&2 ? cu->cuorg[1] + cu->cusize : cu->cuorg[1];
522 dt = (dt - pos[1])/r->rdir[1];
523 if (dt < t) {
524 t = dt;
525 ax = 1;
526 }
527 }
528 if (dirf&0x44) {
529 dt = dirf&4 ? cu->cuorg[2] + cu->cusize : cu->cuorg[2];
530 dt = (dt - pos[2])/r->rdir[2];
531 if (dt < t) {
532 t = dt;
533 ax = 2;
534 }
535 }
536 pos[0] += r->rdir[0]*t;
537 pos[1] += r->rdir[1]*t;
538 pos[2] += r->rdir[2]*t;
539 return(ax);
540 }
541
542
543 static
544 checkhit(r, cu, cxs) /* check for hit in full cube */
545 register RAY *r;
546 CUBE *cu;
547 OBJECT *cxs;
548 {
549 OBJECT oset[MAXSET+1];
550 register OBJREC *o;
551 register int i;
552
553 objset(oset, cu->cutree);
554 checkset(oset, cxs); /* eliminate double-checking */
555 for (i = oset[0]; i > 0; i--) {
556 o = objptr(oset[i]);
557 (*ofun[o->otype].funp)(o, r);
558 }
559 if (r->ro == NULL)
560 return(0); /* no scores yet */
561
562 return(incube(cu, r->rop)); /* hit OK if in current cube */
563 }
564
565
566 static
567 checkset(os, cs) /* modify checked set and set to check */
568 register OBJECT *os; /* os' = os - cs */
569 register OBJECT *cs; /* cs' = cs + os */
570 {
571 OBJECT cset[MAXCSET+MAXSET+1];
572 register int i, j;
573 int k;
574 /* copy os in place, cset <- cs */
575 cset[0] = 0;
576 k = 0;
577 for (i = j = 1; i <= os[0]; i++) {
578 while (j <= cs[0] && cs[j] < os[i])
579 cset[++cset[0]] = cs[j++];
580 if (j > cs[0] || os[i] != cs[j]) { /* object to check */
581 os[++k] = os[i];
582 cset[++cset[0]] = os[i];
583 }
584 }
585 if (!(os[0] = k)) /* new "to check" set size */
586 return; /* special case */
587 while (j <= cs[0]) /* get the rest of cs */
588 cset[++cset[0]] = cs[j++];
589 if (cset[0] > MAXCSET) /* truncate "checked" set if nec. */
590 cset[0] = MAXCSET;
591 /* setcopy(cs, cset); */ /* copy cset back to cs */
592 os = cset;
593 for (i = os[0]; i-- >= 0; )
594 *cs++ = *os++;
595 }