1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: raytrace.c,v 2.66 2015/02/24 19:39:27 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* raytrace.c - routines for tracing and shading rays. |
6 |
* |
7 |
* External symbols declared in ray.h |
8 |
*/ |
9 |
|
10 |
#include "copyright.h" |
11 |
|
12 |
#include "ray.h" |
13 |
#include "source.h" |
14 |
#include "otypes.h" |
15 |
#include "otspecial.h" |
16 |
#include "random.h" |
17 |
#include "pmap.h" |
18 |
|
19 |
#define MAXCSET ((MAXSET+1)*2-1) /* maximum check set size */ |
20 |
|
21 |
RNUMBER raynum = 0; /* next unique ray number */ |
22 |
RNUMBER nrays = 0; /* number of calls to localhit */ |
23 |
|
24 |
static RREAL Lambfa[5] = {PI, PI, PI, 0.0, 0.0}; |
25 |
OBJREC Lamb = { |
26 |
OVOID, MAT_PLASTIC, "Lambertian", |
27 |
{NULL, Lambfa, 0, 5}, NULL |
28 |
}; /* a Lambertian surface */ |
29 |
|
30 |
OBJREC Aftplane; /* aft clipping plane object */ |
31 |
|
32 |
#define RAYHIT (-1) /* return value for intercepted ray */ |
33 |
|
34 |
static int raymove(FVECT pos, OBJECT *cxs, int dirf, RAY *r, CUBE *cu); |
35 |
static int checkhit(RAY *r, CUBE *cu, OBJECT *cxs); |
36 |
static void checkset(OBJECT *os, OBJECT *cs); |
37 |
|
38 |
|
39 |
int |
40 |
rayorigin( /* start new ray from old one */ |
41 |
RAY *r, |
42 |
int rt, |
43 |
const RAY *ro, |
44 |
const COLOR rc |
45 |
) |
46 |
{ |
47 |
double rw, re; |
48 |
/* assign coefficient/weight */ |
49 |
if (rc == NULL) { |
50 |
rw = 1.0; |
51 |
setcolor(r->rcoef, 1., 1., 1.); |
52 |
} else { |
53 |
rw = intens(rc); |
54 |
if (rc != r->rcoef) |
55 |
copycolor(r->rcoef, rc); |
56 |
} |
57 |
if ((r->parent = ro) == NULL) { /* primary ray */ |
58 |
r->rlvl = 0; |
59 |
r->rweight = rw; |
60 |
r->crtype = r->rtype = rt; |
61 |
r->rsrc = -1; |
62 |
r->clipset = NULL; |
63 |
r->revf = raytrace; |
64 |
copycolor(r->cext, cextinction); |
65 |
copycolor(r->albedo, salbedo); |
66 |
r->gecc = seccg; |
67 |
r->slights = NULL; |
68 |
} else { /* spawned ray */ |
69 |
if (ro->rot >= FHUGE) { |
70 |
memset(r, 0, sizeof(RAY)); |
71 |
return(-1); /* illegal continuation */ |
72 |
} |
73 |
r->rlvl = ro->rlvl; |
74 |
if (rt & RAYREFL) { |
75 |
r->rlvl++; |
76 |
r->rsrc = -1; |
77 |
r->clipset = ro->clipset; |
78 |
r->rmax = 0.0; |
79 |
} else { |
80 |
r->rsrc = ro->rsrc; |
81 |
r->clipset = ro->newcset; |
82 |
r->rmax = ro->rmax <= FTINY ? 0.0 : ro->rmax - ro->rot; |
83 |
} |
84 |
r->revf = ro->revf; |
85 |
copycolor(r->cext, ro->cext); |
86 |
copycolor(r->albedo, ro->albedo); |
87 |
r->gecc = ro->gecc; |
88 |
r->slights = ro->slights; |
89 |
r->crtype = ro->crtype | (r->rtype = rt); |
90 |
VCOPY(r->rorg, ro->rop); |
91 |
r->rweight = ro->rweight * rw; |
92 |
/* estimate extinction */ |
93 |
re = colval(ro->cext,RED) < colval(ro->cext,GRN) ? |
94 |
colval(ro->cext,RED) : colval(ro->cext,GRN); |
95 |
if (colval(ro->cext,BLU) < re) re = colval(ro->cext,BLU); |
96 |
re *= ro->rot; |
97 |
if (re > 0.1) { |
98 |
if (re > 92.) { |
99 |
r->rweight = 0.0; |
100 |
} else { |
101 |
r->rweight *= exp(-re); |
102 |
} |
103 |
} |
104 |
} |
105 |
rayclear(r); |
106 |
if (r->rweight <= 0.0) /* check for expiration */ |
107 |
return(-1); |
108 |
if (r->crtype & SHADOW) /* shadow commitment */ |
109 |
return(0); |
110 |
/* ambient in photon map? */ |
111 |
if (r->crtype & AMBIENT && photonMapping) |
112 |
return(-1); |
113 |
if (maxdepth <= 0 && rc != NULL) { /* Russian roulette */ |
114 |
if (minweight <= 0.0) |
115 |
error(USER, "zero ray weight in Russian roulette"); |
116 |
if (maxdepth < 0 && r->rlvl > -maxdepth) |
117 |
return(-1); /* upper reflection limit */ |
118 |
if (r->rweight >= minweight) |
119 |
return(0); |
120 |
if (frandom() > r->rweight/minweight) |
121 |
return(-1); |
122 |
rw = minweight/r->rweight; /* promote survivor */ |
123 |
scalecolor(r->rcoef, rw); |
124 |
r->rweight = minweight; |
125 |
return(0); |
126 |
} |
127 |
return(r->rweight >= minweight && r->rlvl <= abs(maxdepth) ? 0 : -1); |
128 |
} |
129 |
|
130 |
|
131 |
void |
132 |
rayclear( /* clear a ray for (re)evaluation */ |
133 |
RAY *r |
134 |
) |
135 |
{ |
136 |
r->rno = raynum++; |
137 |
r->newcset = r->clipset; |
138 |
r->hitf = rayhit; |
139 |
r->robj = OVOID; |
140 |
r->ro = NULL; |
141 |
r->rox = NULL; |
142 |
r->rt = r->rot = FHUGE; |
143 |
r->pert[0] = r->pert[1] = r->pert[2] = 0.0; |
144 |
r->uv[0] = r->uv[1] = 0.0; |
145 |
setcolor(r->pcol, 1.0, 1.0, 1.0); |
146 |
setcolor(r->rcol, 0.0, 0.0, 0.0); |
147 |
} |
148 |
|
149 |
|
150 |
void |
151 |
raytrace( /* trace a ray and compute its value */ |
152 |
RAY *r |
153 |
) |
154 |
{ |
155 |
if (localhit(r, &thescene)) |
156 |
raycont(r); /* hit local surface, evaluate */ |
157 |
else if (r->ro == &Aftplane) { |
158 |
r->ro = NULL; /* hit aft clipping plane */ |
159 |
r->rot = FHUGE; |
160 |
} else if (sourcehit(r)) |
161 |
rayshade(r, r->ro->omod); /* distant source */ |
162 |
|
163 |
if (trace != NULL) |
164 |
(*trace)(r); /* trace execution */ |
165 |
|
166 |
rayparticipate(r); /* for participating medium */ |
167 |
} |
168 |
|
169 |
|
170 |
void |
171 |
raycont( /* check for clipped object and continue */ |
172 |
RAY *r |
173 |
) |
174 |
{ |
175 |
if ((r->clipset != NULL && inset(r->clipset, r->ro->omod)) || |
176 |
!rayshade(r, r->ro->omod)) |
177 |
raytrans(r); |
178 |
} |
179 |
|
180 |
|
181 |
void |
182 |
raytrans( /* transmit ray as is */ |
183 |
RAY *r |
184 |
) |
185 |
{ |
186 |
RAY tr; |
187 |
|
188 |
rayorigin(&tr, TRANS, r, NULL); /* always continue */ |
189 |
VCOPY(tr.rdir, r->rdir); |
190 |
rayvalue(&tr); |
191 |
copycolor(r->rcol, tr.rcol); |
192 |
r->rt = r->rot + tr.rt; |
193 |
} |
194 |
|
195 |
|
196 |
int |
197 |
rayshade( /* shade ray r with material mod */ |
198 |
RAY *r, |
199 |
int mod |
200 |
) |
201 |
{ |
202 |
OBJREC *m; |
203 |
|
204 |
r->rt = r->rot; /* set effective ray length */ |
205 |
for ( ; mod != OVOID; mod = m->omod) { |
206 |
m = objptr(mod); |
207 |
/****** unnecessary test since modifier() is always called |
208 |
if (!ismodifier(m->otype)) { |
209 |
sprintf(errmsg, "illegal modifier \"%s\"", m->oname); |
210 |
error(USER, errmsg); |
211 |
} |
212 |
******/ |
213 |
/* hack for irradiance calculation */ |
214 |
if (do_irrad && !(r->crtype & ~(PRIMARY|TRANS)) && |
215 |
m->otype != MAT_CLIP && |
216 |
(ofun[m->otype].flags & (T_M|T_X))) { |
217 |
if (irr_ignore(m->otype)) { |
218 |
raytrans(r); |
219 |
return(1); |
220 |
} |
221 |
if (!islight(m->otype)) |
222 |
m = &Lamb; |
223 |
} |
224 |
if ((*ofun[m->otype].funp)(m, r)) |
225 |
return(1); /* materials call raytexture() */ |
226 |
} |
227 |
return(0); /* no material! */ |
228 |
} |
229 |
|
230 |
|
231 |
void |
232 |
rayparticipate( /* compute ray medium participation */ |
233 |
RAY *r |
234 |
) |
235 |
{ |
236 |
COLOR ce, ca; |
237 |
double re, ge, be; |
238 |
|
239 |
if (intens(r->cext) <= 1./FHUGE) |
240 |
return; /* no medium */ |
241 |
re = r->rot*colval(r->cext,RED); |
242 |
ge = r->rot*colval(r->cext,GRN); |
243 |
be = r->rot*colval(r->cext,BLU); |
244 |
if (r->crtype & SHADOW) { /* no scattering for sources */ |
245 |
re *= 1. - colval(r->albedo,RED); |
246 |
ge *= 1. - colval(r->albedo,GRN); |
247 |
be *= 1. - colval(r->albedo,BLU); |
248 |
} |
249 |
setcolor(ce, re<=FTINY ? 1. : re>92. ? 0. : exp(-re), |
250 |
ge<=FTINY ? 1. : ge>92. ? 0. : exp(-ge), |
251 |
be<=FTINY ? 1. : be>92. ? 0. : exp(-be)); |
252 |
multcolor(r->rcol, ce); /* path extinction */ |
253 |
if (r->crtype & SHADOW || intens(r->albedo) <= FTINY) |
254 |
return; /* no scattering */ |
255 |
|
256 |
/* PMAP: indirect inscattering accounted for by volume photons? */ |
257 |
if (!volumePhotonMapping) { |
258 |
setcolor(ca, |
259 |
colval(r->albedo,RED)*colval(ambval,RED)*(1.-colval(ce,RED)), |
260 |
colval(r->albedo,GRN)*colval(ambval,GRN)*(1.-colval(ce,GRN)), |
261 |
colval(r->albedo,BLU)*colval(ambval,BLU)*(1.-colval(ce,BLU))); |
262 |
addcolor(r->rcol, ca); /* ambient in scattering */ |
263 |
} |
264 |
|
265 |
srcscatter(r); /* source in scattering */ |
266 |
} |
267 |
|
268 |
|
269 |
void |
270 |
raytexture( /* get material modifiers */ |
271 |
RAY *r, |
272 |
OBJECT mod |
273 |
) |
274 |
{ |
275 |
OBJREC *m; |
276 |
/* execute textures and patterns */ |
277 |
for ( ; mod != OVOID; mod = m->omod) { |
278 |
m = objptr(mod); |
279 |
/****** unnecessary test since modifier() is always called |
280 |
if (!ismodifier(m->otype)) { |
281 |
sprintf(errmsg, "illegal modifier \"%s\"", m->oname); |
282 |
error(USER, errmsg); |
283 |
} |
284 |
******/ |
285 |
if ((*ofun[m->otype].funp)(m, r)) { |
286 |
sprintf(errmsg, "conflicting material \"%s\"", |
287 |
m->oname); |
288 |
objerror(r->ro, USER, errmsg); |
289 |
} |
290 |
} |
291 |
} |
292 |
|
293 |
|
294 |
int |
295 |
raymixture( /* mix modifiers */ |
296 |
RAY *r, |
297 |
OBJECT fore, |
298 |
OBJECT back, |
299 |
double coef |
300 |
) |
301 |
{ |
302 |
RAY fr, br; |
303 |
int foremat, backmat; |
304 |
int i; |
305 |
/* bound coefficient */ |
306 |
if (coef > 1.0) |
307 |
coef = 1.0; |
308 |
else if (coef < 0.0) |
309 |
coef = 0.0; |
310 |
/* compute foreground and background */ |
311 |
foremat = backmat = 0; |
312 |
/* foreground */ |
313 |
fr = *r; |
314 |
if (coef > FTINY) { |
315 |
fr.rweight *= coef; |
316 |
scalecolor(fr.rcoef, coef); |
317 |
foremat = rayshade(&fr, fore); |
318 |
} |
319 |
/* background */ |
320 |
br = *r; |
321 |
if (coef < 1.0-FTINY) { |
322 |
br.rweight *= 1.0-coef; |
323 |
scalecolor(br.rcoef, 1.0-coef); |
324 |
backmat = rayshade(&br, back); |
325 |
} |
326 |
/* check for transparency */ |
327 |
if (backmat ^ foremat) { |
328 |
if (backmat && coef > FTINY) |
329 |
raytrans(&fr); |
330 |
else if (foremat && coef < 1.0-FTINY) |
331 |
raytrans(&br); |
332 |
} |
333 |
/* mix perturbations */ |
334 |
for (i = 0; i < 3; i++) |
335 |
r->pert[i] = coef*fr.pert[i] + (1.0-coef)*br.pert[i]; |
336 |
/* mix pattern colors */ |
337 |
scalecolor(fr.pcol, coef); |
338 |
scalecolor(br.pcol, 1.0-coef); |
339 |
copycolor(r->pcol, fr.pcol); |
340 |
addcolor(r->pcol, br.pcol); |
341 |
/* return value tells if material */ |
342 |
if (!foremat & !backmat) |
343 |
return(0); |
344 |
/* mix returned ray values */ |
345 |
scalecolor(fr.rcol, coef); |
346 |
scalecolor(br.rcol, 1.0-coef); |
347 |
copycolor(r->rcol, fr.rcol); |
348 |
addcolor(r->rcol, br.rcol); |
349 |
r->rt = bright(fr.rcol) > bright(br.rcol) ? fr.rt : br.rt; |
350 |
return(1); |
351 |
} |
352 |
|
353 |
|
354 |
double |
355 |
raydist( /* compute (cumulative) ray distance */ |
356 |
const RAY *r, |
357 |
int flags |
358 |
) |
359 |
{ |
360 |
double sum = 0.0; |
361 |
|
362 |
while (r != NULL && r->crtype&flags) { |
363 |
sum += r->rot; |
364 |
r = r->parent; |
365 |
} |
366 |
return(sum); |
367 |
} |
368 |
|
369 |
|
370 |
void |
371 |
raycontrib( /* compute (cumulative) ray contribution */ |
372 |
RREAL rc[3], |
373 |
const RAY *r, |
374 |
int flags |
375 |
) |
376 |
{ |
377 |
double eext[3]; |
378 |
int i; |
379 |
|
380 |
eext[0] = eext[1] = eext[2] = 0.; |
381 |
rc[0] = rc[1] = rc[2] = 1.; |
382 |
|
383 |
while (r != NULL && r->crtype&flags) { |
384 |
for (i = 3; i--; ) { |
385 |
rc[i] *= colval(r->rcoef,i); |
386 |
eext[i] += r->rot * colval(r->cext,i); |
387 |
} |
388 |
r = r->parent; |
389 |
} |
390 |
for (i = 3; i--; ) |
391 |
rc[i] *= (eext[i] <= FTINY) ? 1. : |
392 |
(eext[i] > 92.) ? 0. : exp(-eext[i]); |
393 |
} |
394 |
|
395 |
|
396 |
double |
397 |
raynormal( /* compute perturbed normal for ray */ |
398 |
FVECT norm, |
399 |
RAY *r |
400 |
) |
401 |
{ |
402 |
double newdot; |
403 |
int i; |
404 |
|
405 |
/* The perturbation is added to the surface normal to obtain |
406 |
* the new normal. If the new normal would affect the surface |
407 |
* orientation wrt. the ray, a correction is made. The method is |
408 |
* still fraught with problems since reflected rays and similar |
409 |
* directions calculated from the surface normal may spawn rays behind |
410 |
* the surface. The only solution is to curb textures at high |
411 |
* incidence (namely, keep DOT(rdir,pert) < Rdot). |
412 |
*/ |
413 |
|
414 |
for (i = 0; i < 3; i++) |
415 |
norm[i] = r->ron[i] + r->pert[i]; |
416 |
|
417 |
if (normalize(norm) == 0.0) { |
418 |
objerror(r->ro, WARNING, "illegal normal perturbation"); |
419 |
VCOPY(norm, r->ron); |
420 |
return(r->rod); |
421 |
} |
422 |
newdot = -DOT(norm, r->rdir); |
423 |
if ((newdot > 0.0) != (r->rod > 0.0)) { /* fix orientation */ |
424 |
for (i = 0; i < 3; i++) |
425 |
norm[i] += 2.0*newdot*r->rdir[i]; |
426 |
newdot = -newdot; |
427 |
} |
428 |
return(newdot); |
429 |
} |
430 |
|
431 |
|
432 |
void |
433 |
newrayxf( /* get new tranformation matrix for ray */ |
434 |
RAY *r |
435 |
) |
436 |
{ |
437 |
static struct xfn { |
438 |
struct xfn *next; |
439 |
FULLXF xf; |
440 |
} xfseed = { &xfseed }, *xflast = &xfseed; |
441 |
struct xfn *xp; |
442 |
const RAY *rp; |
443 |
|
444 |
/* |
445 |
* Search for transform in circular list that |
446 |
* has no associated ray in the tree. |
447 |
*/ |
448 |
xp = xflast; |
449 |
for (rp = r->parent; rp != NULL; rp = rp->parent) |
450 |
if (rp->rox == &xp->xf) { /* xp in use */ |
451 |
xp = xp->next; /* move to next */ |
452 |
if (xp == xflast) { /* need new one */ |
453 |
xp = (struct xfn *)bmalloc(sizeof(struct xfn)); |
454 |
if (xp == NULL) |
455 |
error(SYSTEM, |
456 |
"out of memory in newrayxf"); |
457 |
/* insert in list */ |
458 |
xp->next = xflast->next; |
459 |
xflast->next = xp; |
460 |
break; /* we're done */ |
461 |
} |
462 |
rp = r; /* start check over */ |
463 |
} |
464 |
/* got it */ |
465 |
r->rox = &xp->xf; |
466 |
xflast = xp; |
467 |
} |
468 |
|
469 |
|
470 |
void |
471 |
flipsurface( /* reverse surface orientation */ |
472 |
RAY *r |
473 |
) |
474 |
{ |
475 |
r->rod = -r->rod; |
476 |
r->ron[0] = -r->ron[0]; |
477 |
r->ron[1] = -r->ron[1]; |
478 |
r->ron[2] = -r->ron[2]; |
479 |
r->pert[0] = -r->pert[0]; |
480 |
r->pert[1] = -r->pert[1]; |
481 |
r->pert[2] = -r->pert[2]; |
482 |
} |
483 |
|
484 |
|
485 |
void |
486 |
rayhit( /* standard ray hit test */ |
487 |
OBJECT *oset, |
488 |
RAY *r |
489 |
) |
490 |
{ |
491 |
OBJREC *o; |
492 |
int i; |
493 |
|
494 |
for (i = oset[0]; i > 0; i--) { |
495 |
o = objptr(oset[i]); |
496 |
if ((*ofun[o->otype].funp)(o, r)) |
497 |
r->robj = oset[i]; |
498 |
} |
499 |
} |
500 |
|
501 |
|
502 |
int |
503 |
localhit( /* check for hit in the octree */ |
504 |
RAY *r, |
505 |
CUBE *scene |
506 |
) |
507 |
{ |
508 |
OBJECT cxset[MAXCSET+1]; /* set of checked objects */ |
509 |
FVECT curpos; /* current cube position */ |
510 |
int sflags; /* sign flags */ |
511 |
double t, dt; |
512 |
int i; |
513 |
|
514 |
nrays++; /* increment trace counter */ |
515 |
sflags = 0; |
516 |
for (i = 0; i < 3; i++) { |
517 |
curpos[i] = r->rorg[i]; |
518 |
if (r->rdir[i] > 1e-7) |
519 |
sflags |= 1 << i; |
520 |
else if (r->rdir[i] < -1e-7) |
521 |
sflags |= 0x10 << i; |
522 |
} |
523 |
if (!sflags) { |
524 |
error(WARNING, "zero ray direction in localhit"); |
525 |
return(0); |
526 |
} |
527 |
/* start off assuming nothing hit */ |
528 |
if (r->rmax > FTINY) { /* except aft plane if one */ |
529 |
r->ro = &Aftplane; |
530 |
r->rot = r->rmax; |
531 |
VSUM(r->rop, r->rorg, r->rdir, r->rot); |
532 |
} |
533 |
/* find global cube entrance point */ |
534 |
t = 0.0; |
535 |
if (!incube(scene, curpos)) { |
536 |
/* find distance to entry */ |
537 |
for (i = 0; i < 3; i++) { |
538 |
/* plane in our direction */ |
539 |
if (sflags & 1<<i) |
540 |
dt = scene->cuorg[i]; |
541 |
else if (sflags & 0x10<<i) |
542 |
dt = scene->cuorg[i] + scene->cusize; |
543 |
else |
544 |
continue; |
545 |
/* distance to the plane */ |
546 |
dt = (dt - r->rorg[i])/r->rdir[i]; |
547 |
if (dt > t) |
548 |
t = dt; /* farthest face is the one */ |
549 |
} |
550 |
t += FTINY; /* fudge to get inside cube */ |
551 |
if (t >= r->rot) /* clipped already */ |
552 |
return(0); |
553 |
/* advance position */ |
554 |
VSUM(curpos, curpos, r->rdir, t); |
555 |
|
556 |
if (!incube(scene, curpos)) /* non-intersecting ray */ |
557 |
return(0); |
558 |
} |
559 |
cxset[0] = 0; |
560 |
raymove(curpos, cxset, sflags, r, scene); |
561 |
return((r->ro != NULL) & (r->ro != &Aftplane)); |
562 |
} |
563 |
|
564 |
|
565 |
static int |
566 |
raymove( /* check for hit as we move */ |
567 |
FVECT pos, /* current position, modified herein */ |
568 |
OBJECT *cxs, /* checked objects, modified by checkhit */ |
569 |
int dirf, /* direction indicators to speed tests */ |
570 |
RAY *r, |
571 |
CUBE *cu |
572 |
) |
573 |
{ |
574 |
int ax; |
575 |
double dt, t; |
576 |
|
577 |
if (istree(cu->cutree)) { /* recurse on subcubes */ |
578 |
CUBE cukid; |
579 |
int br, sgn; |
580 |
|
581 |
cukid.cusize = cu->cusize * 0.5; /* find subcube */ |
582 |
VCOPY(cukid.cuorg, cu->cuorg); |
583 |
br = 0; |
584 |
if (pos[0] >= cukid.cuorg[0]+cukid.cusize) { |
585 |
cukid.cuorg[0] += cukid.cusize; |
586 |
br |= 1; |
587 |
} |
588 |
if (pos[1] >= cukid.cuorg[1]+cukid.cusize) { |
589 |
cukid.cuorg[1] += cukid.cusize; |
590 |
br |= 2; |
591 |
} |
592 |
if (pos[2] >= cukid.cuorg[2]+cukid.cusize) { |
593 |
cukid.cuorg[2] += cukid.cusize; |
594 |
br |= 4; |
595 |
} |
596 |
for ( ; ; ) { |
597 |
cukid.cutree = octkid(cu->cutree, br); |
598 |
if ((ax = raymove(pos,cxs,dirf,r,&cukid)) == RAYHIT) |
599 |
return(RAYHIT); |
600 |
sgn = 1 << ax; |
601 |
if (sgn & dirf) /* positive axis? */ |
602 |
if (sgn & br) |
603 |
return(ax); /* overflow */ |
604 |
else { |
605 |
cukid.cuorg[ax] += cukid.cusize; |
606 |
br |= sgn; |
607 |
} |
608 |
else |
609 |
if (sgn & br) { |
610 |
cukid.cuorg[ax] -= cukid.cusize; |
611 |
br &= ~sgn; |
612 |
} else |
613 |
return(ax); /* underflow */ |
614 |
} |
615 |
/*NOTREACHED*/ |
616 |
} |
617 |
if (isfull(cu->cutree)) { |
618 |
if (checkhit(r, cu, cxs)) |
619 |
return(RAYHIT); |
620 |
} else if (r->ro == &Aftplane && incube(cu, r->rop)) |
621 |
return(RAYHIT); |
622 |
/* advance to next cube */ |
623 |
if (dirf&0x11) { |
624 |
dt = dirf&1 ? cu->cuorg[0] + cu->cusize : cu->cuorg[0]; |
625 |
t = (dt - pos[0])/r->rdir[0]; |
626 |
ax = 0; |
627 |
} else |
628 |
t = FHUGE; |
629 |
if (dirf&0x22) { |
630 |
dt = dirf&2 ? cu->cuorg[1] + cu->cusize : cu->cuorg[1]; |
631 |
dt = (dt - pos[1])/r->rdir[1]; |
632 |
if (dt < t) { |
633 |
t = dt; |
634 |
ax = 1; |
635 |
} |
636 |
} |
637 |
if (dirf&0x44) { |
638 |
dt = dirf&4 ? cu->cuorg[2] + cu->cusize : cu->cuorg[2]; |
639 |
dt = (dt - pos[2])/r->rdir[2]; |
640 |
if (dt < t) { |
641 |
t = dt; |
642 |
ax = 2; |
643 |
} |
644 |
} |
645 |
VSUM(pos, pos, r->rdir, t); |
646 |
return(ax); |
647 |
} |
648 |
|
649 |
|
650 |
static int |
651 |
checkhit( /* check for hit in full cube */ |
652 |
RAY *r, |
653 |
CUBE *cu, |
654 |
OBJECT *cxs |
655 |
) |
656 |
{ |
657 |
OBJECT oset[MAXSET+1]; |
658 |
|
659 |
objset(oset, cu->cutree); |
660 |
checkset(oset, cxs); /* avoid double-checking */ |
661 |
|
662 |
(*r->hitf)(oset, r); /* test for hit in set */ |
663 |
|
664 |
if (r->robj == OVOID) |
665 |
return(0); /* no scores yet */ |
666 |
|
667 |
return(incube(cu, r->rop)); /* hit OK if in current cube */ |
668 |
} |
669 |
|
670 |
|
671 |
static void |
672 |
checkset( /* modify checked set and set to check */ |
673 |
OBJECT *os, /* os' = os - cs */ |
674 |
OBJECT *cs /* cs' = cs + os */ |
675 |
) |
676 |
{ |
677 |
OBJECT cset[MAXCSET+MAXSET+1]; |
678 |
int i, j; |
679 |
int k; |
680 |
/* copy os in place, cset <- cs */ |
681 |
cset[0] = 0; |
682 |
k = 0; |
683 |
for (i = j = 1; i <= os[0]; i++) { |
684 |
while (j <= cs[0] && cs[j] < os[i]) |
685 |
cset[++cset[0]] = cs[j++]; |
686 |
if (j > cs[0] || os[i] != cs[j]) { /* object to check */ |
687 |
os[++k] = os[i]; |
688 |
cset[++cset[0]] = os[i]; |
689 |
} |
690 |
} |
691 |
if (!(os[0] = k)) /* new "to check" set size */ |
692 |
return; /* special case */ |
693 |
while (j <= cs[0]) /* get the rest of cs */ |
694 |
cset[++cset[0]] = cs[j++]; |
695 |
if (cset[0] > MAXCSET) /* truncate "checked" set if nec. */ |
696 |
cset[0] = MAXCSET; |
697 |
/* setcopy(cs, cset); */ /* copy cset back to cs */ |
698 |
os = cset; |
699 |
for (i = os[0]; i-- >= 0; ) |
700 |
*cs++ = *os++; |
701 |
} |