1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id$"; |
3 |
#endif |
4 |
/* |
5 |
* raytrace.c - routines for tracing and shading rays. |
6 |
* |
7 |
* External symbols declared in ray.h |
8 |
*/ |
9 |
|
10 |
#include "copyright.h" |
11 |
|
12 |
#include "ray.h" |
13 |
|
14 |
#include "otypes.h" |
15 |
|
16 |
#include "otspecial.h" |
17 |
|
18 |
#define MAXCSET ((MAXSET+1)*2-1) /* maximum check set size */ |
19 |
|
20 |
unsigned long raynum = 0; /* next unique ray number */ |
21 |
unsigned long nrays = 0; /* number of calls to localhit */ |
22 |
|
23 |
static FLOAT Lambfa[5] = {PI, PI, PI, 0.0, 0.0}; |
24 |
OBJREC Lamb = { |
25 |
OVOID, MAT_PLASTIC, "Lambertian", |
26 |
{0, 5, NULL, Lambfa}, NULL, |
27 |
}; /* a Lambertian surface */ |
28 |
|
29 |
OBJREC Aftplane; /* aft clipping plane object */ |
30 |
|
31 |
static int raymove(), checkhit(); |
32 |
static void checkset(); |
33 |
|
34 |
#ifndef MAXLOOP |
35 |
#define MAXLOOP 0 /* modifier loop detection */ |
36 |
#endif |
37 |
|
38 |
#define RAYHIT (-1) /* return value for intercepted ray */ |
39 |
|
40 |
|
41 |
int |
42 |
rayorigin(r, ro, rt, rw) /* start new ray from old one */ |
43 |
register RAY *r, *ro; |
44 |
int rt; |
45 |
double rw; |
46 |
{ |
47 |
double re; |
48 |
|
49 |
if ((r->parent = ro) == NULL) { /* primary ray */ |
50 |
r->rlvl = 0; |
51 |
r->rweight = rw; |
52 |
r->crtype = r->rtype = rt; |
53 |
r->rsrc = -1; |
54 |
r->clipset = NULL; |
55 |
r->revf = raytrace; |
56 |
copycolor(r->cext, cextinction); |
57 |
copycolor(r->albedo, salbedo); |
58 |
r->gecc = seccg; |
59 |
r->slights = NULL; |
60 |
} else { /* spawned ray */ |
61 |
r->rlvl = ro->rlvl; |
62 |
if (rt & RAYREFL) { |
63 |
r->rlvl++; |
64 |
r->rsrc = -1; |
65 |
r->clipset = ro->clipset; |
66 |
r->rmax = 0.0; |
67 |
} else { |
68 |
r->rsrc = ro->rsrc; |
69 |
r->clipset = ro->newcset; |
70 |
r->rmax = ro->rmax <= FTINY ? 0.0 : ro->rmax - ro->rot; |
71 |
} |
72 |
r->revf = ro->revf; |
73 |
copycolor(r->cext, ro->cext); |
74 |
copycolor(r->albedo, ro->albedo); |
75 |
r->gecc = ro->gecc; |
76 |
r->slights = ro->slights; |
77 |
r->crtype = ro->crtype | (r->rtype = rt); |
78 |
VCOPY(r->rorg, ro->rop); |
79 |
r->rweight = ro->rweight * rw; |
80 |
/* estimate absorption */ |
81 |
re = colval(ro->cext,RED) < colval(ro->cext,GRN) ? |
82 |
colval(ro->cext,RED) : colval(ro->cext,GRN); |
83 |
if (colval(ro->cext,BLU) < re) re = colval(ro->cext,BLU); |
84 |
if (re > 0.) |
85 |
r->rweight *= exp(-re*ro->rot); |
86 |
} |
87 |
rayclear(r); |
88 |
return(r->rlvl <= maxdepth && r->rweight >= minweight ? 0 : -1); |
89 |
} |
90 |
|
91 |
|
92 |
void |
93 |
rayclear(r) /* clear a ray for (re)evaluation */ |
94 |
register RAY *r; |
95 |
{ |
96 |
r->rno = raynum++; |
97 |
r->newcset = r->clipset; |
98 |
r->robj = OVOID; |
99 |
r->ro = NULL; |
100 |
r->rox = NULL; |
101 |
r->rt = r->rot = FHUGE; |
102 |
r->pert[0] = r->pert[1] = r->pert[2] = 0.0; |
103 |
setcolor(r->pcol, 1.0, 1.0, 1.0); |
104 |
setcolor(r->rcol, 0.0, 0.0, 0.0); |
105 |
} |
106 |
|
107 |
|
108 |
void |
109 |
raytrace(r) /* trace a ray and compute its value */ |
110 |
RAY *r; |
111 |
{ |
112 |
if (localhit(r, &thescene)) |
113 |
raycont(r); /* hit local surface, evaluate */ |
114 |
else if (r->ro == &Aftplane) { |
115 |
r->ro = NULL; /* hit aft clipping plane */ |
116 |
r->rot = FHUGE; |
117 |
} else if (sourcehit(r)) |
118 |
rayshade(r, r->ro->omod); /* distant source */ |
119 |
|
120 |
rayparticipate(r); /* for participating medium */ |
121 |
|
122 |
if (trace != NULL) |
123 |
(*trace)(r); /* trace execution */ |
124 |
} |
125 |
|
126 |
|
127 |
void |
128 |
raycont(r) /* check for clipped object and continue */ |
129 |
register RAY *r; |
130 |
{ |
131 |
if ((r->clipset != NULL && inset(r->clipset, r->ro->omod)) || |
132 |
!rayshade(r, r->ro->omod)) |
133 |
raytrans(r); |
134 |
} |
135 |
|
136 |
|
137 |
void |
138 |
raytrans(r) /* transmit ray as is */ |
139 |
register RAY *r; |
140 |
{ |
141 |
RAY tr; |
142 |
|
143 |
if (rayorigin(&tr, r, TRANS, 1.0) == 0) { |
144 |
VCOPY(tr.rdir, r->rdir); |
145 |
rayvalue(&tr); |
146 |
copycolor(r->rcol, tr.rcol); |
147 |
r->rt = r->rot + tr.rt; |
148 |
} |
149 |
} |
150 |
|
151 |
|
152 |
int |
153 |
rayshade(r, mod) /* shade ray r with material mod */ |
154 |
register RAY *r; |
155 |
int mod; |
156 |
{ |
157 |
int gotmat; |
158 |
register OBJREC *m; |
159 |
#if MAXLOOP |
160 |
static int depth = 0; |
161 |
/* check for infinite loop */ |
162 |
if (depth++ >= MAXLOOP) |
163 |
objerror(r->ro, USER, "possible modifier loop"); |
164 |
#endif |
165 |
r->rt = r->rot; /* set effective ray length */ |
166 |
for (gotmat = 0; !gotmat && mod != OVOID; mod = m->omod) { |
167 |
m = objptr(mod); |
168 |
/****** unnecessary test since modifier() is always called |
169 |
if (!ismodifier(m->otype)) { |
170 |
sprintf(errmsg, "illegal modifier \"%s\"", m->oname); |
171 |
error(USER, errmsg); |
172 |
} |
173 |
******/ |
174 |
/* hack for irradiance calculation */ |
175 |
if (do_irrad && !(r->crtype & ~(PRIMARY|TRANS))) { |
176 |
if (irr_ignore(m->otype)) { |
177 |
#if MAXLOOP |
178 |
depth--; |
179 |
#endif |
180 |
raytrans(r); |
181 |
return(1); |
182 |
} |
183 |
if (!islight(m->otype)) |
184 |
m = &Lamb; |
185 |
} |
186 |
/* materials call raytexture */ |
187 |
gotmat = (*ofun[m->otype].funp)(m, r); |
188 |
} |
189 |
#if MAXLOOP |
190 |
depth--; |
191 |
#endif |
192 |
return(gotmat); |
193 |
} |
194 |
|
195 |
|
196 |
void |
197 |
rayparticipate(r) /* compute ray medium participation */ |
198 |
register RAY *r; |
199 |
{ |
200 |
COLOR ce, ca; |
201 |
double re, ge, be; |
202 |
|
203 |
if (intens(r->cext) <= 1./FHUGE) |
204 |
return; /* no medium */ |
205 |
re = r->rot*colval(r->cext,RED); |
206 |
ge = r->rot*colval(r->cext,GRN); |
207 |
be = r->rot*colval(r->cext,BLU); |
208 |
if (r->crtype & SHADOW) { /* no scattering for sources */ |
209 |
re *= 1. - colval(r->albedo,RED); |
210 |
ge *= 1. - colval(r->albedo,GRN); |
211 |
be *= 1. - colval(r->albedo,BLU); |
212 |
} |
213 |
setcolor(ce, re<=0. ? 1. : re>92. ? 0. : exp(-re), |
214 |
ge<=0. ? 1. : ge>92. ? 0. : exp(-ge), |
215 |
be<=0. ? 1. : be>92. ? 0. : exp(-be)); |
216 |
multcolor(r->rcol, ce); /* path absorption */ |
217 |
if (r->crtype & SHADOW || intens(r->albedo) <= FTINY) |
218 |
return; /* no scattering */ |
219 |
setcolor(ca, |
220 |
colval(r->albedo,RED)*colval(ambval,RED)*(1.-colval(ce,RED)), |
221 |
colval(r->albedo,GRN)*colval(ambval,GRN)*(1.-colval(ce,GRN)), |
222 |
colval(r->albedo,BLU)*colval(ambval,BLU)*(1.-colval(ce,BLU))); |
223 |
addcolor(r->rcol, ca); /* ambient in scattering */ |
224 |
srcscatter(r); /* source in scattering */ |
225 |
} |
226 |
|
227 |
|
228 |
raytexture(r, mod) /* get material modifiers */ |
229 |
RAY *r; |
230 |
int mod; |
231 |
{ |
232 |
register OBJREC *m; |
233 |
#if MAXLOOP |
234 |
static int depth = 0; |
235 |
/* check for infinite loop */ |
236 |
if (depth++ >= MAXLOOP) |
237 |
objerror(r->ro, USER, "modifier loop"); |
238 |
#endif |
239 |
/* execute textures and patterns */ |
240 |
for ( ; mod != OVOID; mod = m->omod) { |
241 |
m = objptr(mod); |
242 |
/****** unnecessary test since modifier() is always called |
243 |
if (!ismodifier(m->otype)) { |
244 |
sprintf(errmsg, "illegal modifier \"%s\"", m->oname); |
245 |
error(USER, errmsg); |
246 |
} |
247 |
******/ |
248 |
if ((*ofun[m->otype].funp)(m, r)) { |
249 |
sprintf(errmsg, "conflicting material \"%s\"", |
250 |
m->oname); |
251 |
objerror(r->ro, USER, errmsg); |
252 |
} |
253 |
} |
254 |
#if MAXLOOP |
255 |
depth--; /* end here */ |
256 |
#endif |
257 |
} |
258 |
|
259 |
|
260 |
int |
261 |
raymixture(r, fore, back, coef) /* mix modifiers */ |
262 |
register RAY *r; |
263 |
OBJECT fore, back; |
264 |
double coef; |
265 |
{ |
266 |
RAY fr, br; |
267 |
int foremat, backmat; |
268 |
register int i; |
269 |
/* bound coefficient */ |
270 |
if (coef > 1.0) |
271 |
coef = 1.0; |
272 |
else if (coef < 0.0) |
273 |
coef = 0.0; |
274 |
/* compute foreground and background */ |
275 |
foremat = backmat = 0; |
276 |
/* foreground */ |
277 |
copystruct(&fr, r); |
278 |
if (coef > FTINY) |
279 |
foremat = rayshade(&fr, fore); |
280 |
/* background */ |
281 |
copystruct(&br, r); |
282 |
if (coef < 1.0-FTINY) |
283 |
backmat = rayshade(&br, back); |
284 |
/* check for transparency */ |
285 |
if (backmat ^ foremat) |
286 |
if (backmat && coef > FTINY) |
287 |
raytrans(&fr); |
288 |
else if (foremat && coef < 1.0-FTINY) |
289 |
raytrans(&br); |
290 |
/* mix perturbations */ |
291 |
for (i = 0; i < 3; i++) |
292 |
r->pert[i] = coef*fr.pert[i] + (1.0-coef)*br.pert[i]; |
293 |
/* mix pattern colors */ |
294 |
scalecolor(fr.pcol, coef); |
295 |
scalecolor(br.pcol, 1.0-coef); |
296 |
copycolor(r->pcol, fr.pcol); |
297 |
addcolor(r->pcol, br.pcol); |
298 |
/* return value tells if material */ |
299 |
if (!foremat & !backmat) |
300 |
return(0); |
301 |
/* mix returned ray values */ |
302 |
scalecolor(fr.rcol, coef); |
303 |
scalecolor(br.rcol, 1.0-coef); |
304 |
copycolor(r->rcol, fr.rcol); |
305 |
addcolor(r->rcol, br.rcol); |
306 |
r->rt = bright(fr.rcol) > bright(br.rcol) ? fr.rt : br.rt; |
307 |
return(1); |
308 |
} |
309 |
|
310 |
|
311 |
double |
312 |
raydist(r, flags) /* compute (cumulative) ray distance */ |
313 |
register RAY *r; |
314 |
register int flags; |
315 |
{ |
316 |
double sum = 0.0; |
317 |
|
318 |
while (r != NULL && r->crtype&flags) { |
319 |
sum += r->rot; |
320 |
r = r->parent; |
321 |
} |
322 |
return(sum); |
323 |
} |
324 |
|
325 |
|
326 |
double |
327 |
raynormal(norm, r) /* compute perturbed normal for ray */ |
328 |
FVECT norm; |
329 |
register RAY *r; |
330 |
{ |
331 |
double newdot; |
332 |
register int i; |
333 |
|
334 |
/* The perturbation is added to the surface normal to obtain |
335 |
* the new normal. If the new normal would affect the surface |
336 |
* orientation wrt. the ray, a correction is made. The method is |
337 |
* still fraught with problems since reflected rays and similar |
338 |
* directions calculated from the surface normal may spawn rays behind |
339 |
* the surface. The only solution is to curb textures at high |
340 |
* incidence (namely, keep DOT(rdir,pert) < Rdot). |
341 |
*/ |
342 |
|
343 |
for (i = 0; i < 3; i++) |
344 |
norm[i] = r->ron[i] + r->pert[i]; |
345 |
|
346 |
if (normalize(norm) == 0.0) { |
347 |
objerror(r->ro, WARNING, "illegal normal perturbation"); |
348 |
VCOPY(norm, r->ron); |
349 |
return(r->rod); |
350 |
} |
351 |
newdot = -DOT(norm, r->rdir); |
352 |
if ((newdot > 0.0) != (r->rod > 0.0)) { /* fix orientation */ |
353 |
for (i = 0; i < 3; i++) |
354 |
norm[i] += 2.0*newdot*r->rdir[i]; |
355 |
newdot = -newdot; |
356 |
} |
357 |
return(newdot); |
358 |
} |
359 |
|
360 |
|
361 |
void |
362 |
newrayxf(r) /* get new tranformation matrix for ray */ |
363 |
RAY *r; |
364 |
{ |
365 |
static struct xfn { |
366 |
struct xfn *next; |
367 |
FULLXF xf; |
368 |
} xfseed = { &xfseed }, *xflast = &xfseed; |
369 |
register struct xfn *xp; |
370 |
register RAY *rp; |
371 |
|
372 |
/* |
373 |
* Search for transform in circular list that |
374 |
* has no associated ray in the tree. |
375 |
*/ |
376 |
xp = xflast; |
377 |
for (rp = r->parent; rp != NULL; rp = rp->parent) |
378 |
if (rp->rox == &xp->xf) { /* xp in use */ |
379 |
xp = xp->next; /* move to next */ |
380 |
if (xp == xflast) { /* need new one */ |
381 |
xp = (struct xfn *)malloc(sizeof(struct xfn)); |
382 |
if (xp == NULL) |
383 |
error(SYSTEM, |
384 |
"out of memory in newrayxf"); |
385 |
/* insert in list */ |
386 |
xp->next = xflast->next; |
387 |
xflast->next = xp; |
388 |
break; /* we're done */ |
389 |
} |
390 |
rp = r; /* start check over */ |
391 |
} |
392 |
/* got it */ |
393 |
r->rox = &xp->xf; |
394 |
xflast = xp; |
395 |
} |
396 |
|
397 |
|
398 |
void |
399 |
flipsurface(r) /* reverse surface orientation */ |
400 |
register RAY *r; |
401 |
{ |
402 |
r->rod = -r->rod; |
403 |
r->ron[0] = -r->ron[0]; |
404 |
r->ron[1] = -r->ron[1]; |
405 |
r->ron[2] = -r->ron[2]; |
406 |
r->pert[0] = -r->pert[0]; |
407 |
r->pert[1] = -r->pert[1]; |
408 |
r->pert[2] = -r->pert[2]; |
409 |
} |
410 |
|
411 |
|
412 |
int |
413 |
localhit(r, scene) /* check for hit in the octree */ |
414 |
register RAY *r; |
415 |
register CUBE *scene; |
416 |
{ |
417 |
OBJECT cxset[MAXCSET+1]; /* set of checked objects */ |
418 |
FVECT curpos; /* current cube position */ |
419 |
int sflags; /* sign flags */ |
420 |
double t, dt; |
421 |
register int i; |
422 |
|
423 |
nrays++; /* increment trace counter */ |
424 |
sflags = 0; |
425 |
for (i = 0; i < 3; i++) { |
426 |
curpos[i] = r->rorg[i]; |
427 |
if (r->rdir[i] > 1e-7) |
428 |
sflags |= 1 << i; |
429 |
else if (r->rdir[i] < -1e-7) |
430 |
sflags |= 0x10 << i; |
431 |
} |
432 |
if (sflags == 0) |
433 |
error(CONSISTENCY, "zero ray direction in localhit"); |
434 |
/* start off assuming nothing hit */ |
435 |
if (r->rmax > FTINY) { /* except aft plane if one */ |
436 |
r->ro = &Aftplane; |
437 |
r->rot = r->rmax; |
438 |
for (i = 0; i < 3; i++) |
439 |
r->rop[i] = r->rorg[i] + r->rot*r->rdir[i]; |
440 |
} |
441 |
/* find global cube entrance point */ |
442 |
t = 0.0; |
443 |
if (!incube(scene, curpos)) { |
444 |
/* find distance to entry */ |
445 |
for (i = 0; i < 3; i++) { |
446 |
/* plane in our direction */ |
447 |
if (sflags & 1<<i) |
448 |
dt = scene->cuorg[i]; |
449 |
else if (sflags & 0x10<<i) |
450 |
dt = scene->cuorg[i] + scene->cusize; |
451 |
else |
452 |
continue; |
453 |
/* distance to the plane */ |
454 |
dt = (dt - r->rorg[i])/r->rdir[i]; |
455 |
if (dt > t) |
456 |
t = dt; /* farthest face is the one */ |
457 |
} |
458 |
t += FTINY; /* fudge to get inside cube */ |
459 |
if (t >= r->rot) /* clipped already */ |
460 |
return(0); |
461 |
/* advance position */ |
462 |
for (i = 0; i < 3; i++) |
463 |
curpos[i] += r->rdir[i]*t; |
464 |
|
465 |
if (!incube(scene, curpos)) /* non-intersecting ray */ |
466 |
return(0); |
467 |
} |
468 |
cxset[0] = 0; |
469 |
raymove(curpos, cxset, sflags, r, scene); |
470 |
return(r->ro != NULL & r->ro != &Aftplane); |
471 |
} |
472 |
|
473 |
|
474 |
static int |
475 |
raymove(pos, cxs, dirf, r, cu) /* check for hit as we move */ |
476 |
FVECT pos; /* current position, modified herein */ |
477 |
OBJECT *cxs; /* checked objects, modified by checkhit */ |
478 |
int dirf; /* direction indicators to speed tests */ |
479 |
register RAY *r; |
480 |
register CUBE *cu; |
481 |
{ |
482 |
int ax; |
483 |
double dt, t; |
484 |
|
485 |
if (istree(cu->cutree)) { /* recurse on subcubes */ |
486 |
CUBE cukid; |
487 |
register int br, sgn; |
488 |
|
489 |
cukid.cusize = cu->cusize * 0.5; /* find subcube */ |
490 |
VCOPY(cukid.cuorg, cu->cuorg); |
491 |
br = 0; |
492 |
if (pos[0] >= cukid.cuorg[0]+cukid.cusize) { |
493 |
cukid.cuorg[0] += cukid.cusize; |
494 |
br |= 1; |
495 |
} |
496 |
if (pos[1] >= cukid.cuorg[1]+cukid.cusize) { |
497 |
cukid.cuorg[1] += cukid.cusize; |
498 |
br |= 2; |
499 |
} |
500 |
if (pos[2] >= cukid.cuorg[2]+cukid.cusize) { |
501 |
cukid.cuorg[2] += cukid.cusize; |
502 |
br |= 4; |
503 |
} |
504 |
for ( ; ; ) { |
505 |
cukid.cutree = octkid(cu->cutree, br); |
506 |
if ((ax = raymove(pos,cxs,dirf,r,&cukid)) == RAYHIT) |
507 |
return(RAYHIT); |
508 |
sgn = 1 << ax; |
509 |
if (sgn & dirf) /* positive axis? */ |
510 |
if (sgn & br) |
511 |
return(ax); /* overflow */ |
512 |
else { |
513 |
cukid.cuorg[ax] += cukid.cusize; |
514 |
br |= sgn; |
515 |
} |
516 |
else |
517 |
if (sgn & br) { |
518 |
cukid.cuorg[ax] -= cukid.cusize; |
519 |
br &= ~sgn; |
520 |
} else |
521 |
return(ax); /* underflow */ |
522 |
} |
523 |
/*NOTREACHED*/ |
524 |
} |
525 |
if (isfull(cu->cutree)) { |
526 |
if (checkhit(r, cu, cxs)) |
527 |
return(RAYHIT); |
528 |
} else if (r->ro == &Aftplane && incube(cu, r->rop)) |
529 |
return(RAYHIT); |
530 |
/* advance to next cube */ |
531 |
if (dirf&0x11) { |
532 |
dt = dirf&1 ? cu->cuorg[0] + cu->cusize : cu->cuorg[0]; |
533 |
t = (dt - pos[0])/r->rdir[0]; |
534 |
ax = 0; |
535 |
} else |
536 |
t = FHUGE; |
537 |
if (dirf&0x22) { |
538 |
dt = dirf&2 ? cu->cuorg[1] + cu->cusize : cu->cuorg[1]; |
539 |
dt = (dt - pos[1])/r->rdir[1]; |
540 |
if (dt < t) { |
541 |
t = dt; |
542 |
ax = 1; |
543 |
} |
544 |
} |
545 |
if (dirf&0x44) { |
546 |
dt = dirf&4 ? cu->cuorg[2] + cu->cusize : cu->cuorg[2]; |
547 |
dt = (dt - pos[2])/r->rdir[2]; |
548 |
if (dt < t) { |
549 |
t = dt; |
550 |
ax = 2; |
551 |
} |
552 |
} |
553 |
pos[0] += r->rdir[0]*t; |
554 |
pos[1] += r->rdir[1]*t; |
555 |
pos[2] += r->rdir[2]*t; |
556 |
return(ax); |
557 |
} |
558 |
|
559 |
|
560 |
static int |
561 |
checkhit(r, cu, cxs) /* check for hit in full cube */ |
562 |
register RAY *r; |
563 |
CUBE *cu; |
564 |
OBJECT *cxs; |
565 |
{ |
566 |
OBJECT oset[MAXSET+1]; |
567 |
register OBJREC *o; |
568 |
register int i; |
569 |
|
570 |
objset(oset, cu->cutree); |
571 |
checkset(oset, cxs); /* eliminate double-checking */ |
572 |
for (i = oset[0]; i > 0; i--) { |
573 |
o = objptr(oset[i]); |
574 |
if ((*ofun[o->otype].funp)(o, r)) |
575 |
r->robj = oset[i]; |
576 |
} |
577 |
if (r->ro == NULL) |
578 |
return(0); /* no scores yet */ |
579 |
|
580 |
return(incube(cu, r->rop)); /* hit OK if in current cube */ |
581 |
} |
582 |
|
583 |
|
584 |
static void |
585 |
checkset(os, cs) /* modify checked set and set to check */ |
586 |
register OBJECT *os; /* os' = os - cs */ |
587 |
register OBJECT *cs; /* cs' = cs + os */ |
588 |
{ |
589 |
OBJECT cset[MAXCSET+MAXSET+1]; |
590 |
register int i, j; |
591 |
int k; |
592 |
/* copy os in place, cset <- cs */ |
593 |
cset[0] = 0; |
594 |
k = 0; |
595 |
for (i = j = 1; i <= os[0]; i++) { |
596 |
while (j <= cs[0] && cs[j] < os[i]) |
597 |
cset[++cset[0]] = cs[j++]; |
598 |
if (j > cs[0] || os[i] != cs[j]) { /* object to check */ |
599 |
os[++k] = os[i]; |
600 |
cset[++cset[0]] = os[i]; |
601 |
} |
602 |
} |
603 |
if (!(os[0] = k)) /* new "to check" set size */ |
604 |
return; /* special case */ |
605 |
while (j <= cs[0]) /* get the rest of cs */ |
606 |
cset[++cset[0]] = cs[j++]; |
607 |
if (cset[0] > MAXCSET) /* truncate "checked" set if nec. */ |
608 |
cset[0] = MAXCSET; |
609 |
/* setcopy(cs, cset); */ /* copy cset back to cs */ |
610 |
os = cset; |
611 |
for (i = os[0]; i-- >= 0; ) |
612 |
*cs++ = *os++; |
613 |
} |