ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raytrace.c
Revision: 2.73
Committed: Tue Nov 13 19:58:33 2018 UTC (5 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.72: +11 -5 lines
Log Message:
Added -orRxX options to rtrace for VR rendering

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: raytrace.c,v 2.72 2018/01/09 05:01:15 greg Exp $";
3 #endif
4 /*
5 * raytrace.c - routines for tracing and shading rays.
6 *
7 * External symbols declared in ray.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13 #include "source.h"
14 #include "otypes.h"
15 #include "otspecial.h"
16 #include "random.h"
17 #include "pmap.h"
18
19 #define MAXCSET ((MAXSET+1)*2-1) /* maximum check set size */
20
21 RNUMBER raynum = 0; /* next unique ray number */
22 RNUMBER nrays = 0; /* number of calls to localhit */
23
24 static RREAL Lambfa[5] = {PI, PI, PI, 0.0, 0.0};
25 OBJREC Lamb = {
26 OVOID, MAT_PLASTIC, "Lambertian",
27 {NULL, Lambfa, 0, 5}, NULL
28 }; /* a Lambertian surface */
29
30 OBJREC Aftplane; /* aft clipping plane object */
31
32 #define RAYHIT (-1) /* return value for intercepted ray */
33
34 static int raymove(FVECT pos, OBJECT *cxs, int dirf, RAY *r, CUBE *cu);
35 static int checkhit(RAY *r, CUBE *cu, OBJECT *cxs);
36 static void checkset(OBJECT *os, OBJECT *cs);
37
38
39 int
40 rayorigin( /* start new ray from old one */
41 RAY *r,
42 int rt,
43 const RAY *ro,
44 const COLOR rc
45 )
46 {
47 double rw, re;
48 /* assign coefficient/weight */
49 if (rc == NULL) {
50 rw = 1.0;
51 setcolor(r->rcoef, 1., 1., 1.);
52 } else {
53 rw = intens(rc);
54 if (rw > 1.0)
55 rw = 1.0; /* avoid calculation growth */
56 if (rc != r->rcoef)
57 copycolor(r->rcoef, rc);
58 }
59 if ((r->parent = ro) == NULL) { /* primary ray */
60 r->rlvl = 0;
61 r->rweight = rw;
62 r->crtype = r->rtype = rt;
63 r->rsrc = -1;
64 r->clipset = NULL;
65 r->revf = raytrace;
66 copycolor(r->cext, cextinction);
67 copycolor(r->albedo, salbedo);
68 r->gecc = seccg;
69 r->slights = NULL;
70 } else { /* spawned ray */
71 if (ro->rot >= FHUGE) {
72 memset(r, 0, sizeof(RAY));
73 return(-1); /* illegal continuation */
74 }
75 r->rlvl = ro->rlvl;
76 if (rt & RAYREFL) {
77 r->rlvl++;
78 r->rsrc = -1;
79 r->clipset = ro->clipset;
80 r->rmax = 0.0;
81 } else {
82 r->rsrc = ro->rsrc;
83 r->clipset = ro->newcset;
84 r->rmax = ro->rmax <= FTINY ? 0.0 : ro->rmax - ro->rot;
85 }
86 r->revf = ro->revf;
87 copycolor(r->cext, ro->cext);
88 copycolor(r->albedo, ro->albedo);
89 r->gecc = ro->gecc;
90 r->slights = ro->slights;
91 r->crtype = ro->crtype | (r->rtype = rt);
92 VCOPY(r->rorg, ro->rop);
93 r->rweight = ro->rweight * rw;
94 /* estimate extinction */
95 re = colval(ro->cext,RED) < colval(ro->cext,GRN) ?
96 colval(ro->cext,RED) : colval(ro->cext,GRN);
97 if (colval(ro->cext,BLU) < re) re = colval(ro->cext,BLU);
98 re *= ro->rot;
99 if (re > 0.1) {
100 if (re > 92.) {
101 r->rweight = 0.0;
102 } else {
103 r->rweight *= exp(-re);
104 }
105 }
106 }
107 rayclear(r);
108 if (r->rweight <= 0.0) /* check for expiration */
109 return(-1);
110 if (r->crtype & SHADOW) /* shadow commitment */
111 return(0);
112 /* ambient in photon map? */
113 if (ro != NULL && ro->crtype & AMBIENT) {
114 if (causticPhotonMapping)
115 return(-1);
116 if (photonMapping && rt != TRANS)
117 return(-1);
118 }
119 if (maxdepth <= 0 && rc != NULL) { /* Russian roulette */
120 if (minweight <= 0.0)
121 error(USER, "zero ray weight in Russian roulette");
122 if (maxdepth < 0 && r->rlvl > -maxdepth)
123 return(-1); /* upper reflection limit */
124 if (r->rweight >= minweight)
125 return(0);
126 if (frandom() > r->rweight/minweight)
127 return(-1);
128 rw = minweight/r->rweight; /* promote survivor */
129 scalecolor(r->rcoef, rw);
130 r->rweight = minweight;
131 return(0);
132 }
133 return(r->rweight >= minweight && r->rlvl <= abs(maxdepth) ? 0 : -1);
134 }
135
136
137 void
138 rayclear( /* clear a ray for (re)evaluation */
139 RAY *r
140 )
141 {
142 r->rno = raynum++;
143 r->newcset = r->clipset;
144 r->hitf = rayhit;
145 r->robj = OVOID;
146 r->ro = NULL;
147 r->rox = NULL;
148 r->rxt = r->rmt = r->rot = FHUGE;
149 r->pert[0] = r->pert[1] = r->pert[2] = 0.0;
150 r->uv[0] = r->uv[1] = 0.0;
151 setcolor(r->pcol, 1.0, 1.0, 1.0);
152 setcolor(r->mcol, 0.0, 0.0, 0.0);
153 setcolor(r->rcol, 0.0, 0.0, 0.0);
154 }
155
156
157 void
158 raytrace( /* trace a ray and compute its value */
159 RAY *r
160 )
161 {
162 if (localhit(r, &thescene))
163 raycont(r); /* hit local surface, evaluate */
164 else if (r->ro == &Aftplane) {
165 r->ro = NULL; /* hit aft clipping plane */
166 r->rot = FHUGE;
167 } else if (sourcehit(r))
168 rayshade(r, r->ro->omod); /* distant source */
169
170 if (trace != NULL)
171 (*trace)(r); /* trace execution */
172
173 rayparticipate(r); /* for participating medium */
174 }
175
176
177 void
178 raycont( /* check for clipped object and continue */
179 RAY *r
180 )
181 {
182 if ((r->clipset != NULL && inset(r->clipset, r->ro->omod)) ||
183 !rayshade(r, r->ro->omod))
184 raytrans(r);
185 }
186
187
188 void
189 raytrans( /* transmit ray as is */
190 RAY *r
191 )
192 {
193 RAY tr;
194
195 rayorigin(&tr, TRANS, r, NULL); /* always continue */
196 VCOPY(tr.rdir, r->rdir);
197 rayvalue(&tr);
198 copycolor(r->rcol, tr.rcol);
199 r->rmt = r->rot + tr.rmt;
200 r->rxt = r->rot + tr.rxt;
201 }
202
203
204 int
205 rayshade( /* shade ray r with material mod */
206 RAY *r,
207 int mod
208 )
209 {
210 OBJREC *m;
211
212 r->rxt = r->rmt = r->rot; /* preset effective ray length */
213 for ( ; mod != OVOID; mod = m->omod) {
214 m = objptr(mod);
215 /****** unnecessary test since modifier() is always called
216 if (!ismodifier(m->otype)) {
217 sprintf(errmsg, "illegal modifier \"%s\"", m->oname);
218 error(USER, errmsg);
219 }
220 ******/
221 /* hack for irradiance calculation */
222 if (do_irrad && !(r->crtype & ~(PRIMARY|TRANS)) &&
223 (ofun[m->otype].flags & (T_M|T_X)) &&
224 m->otype != MAT_CLIP) {
225 if (istransp(m->otype) || isBSDFproxy(m)) {
226 raytrans(r);
227 return(1);
228 }
229 if (!islight(m->otype))
230 m = &Lamb;
231 }
232 if ((*ofun[m->otype].funp)(m, r))
233 return(1); /* materials call raytexture() */
234 }
235 return(0); /* no material! */
236 }
237
238
239 void
240 rayparticipate( /* compute ray medium participation */
241 RAY *r
242 )
243 {
244 COLOR ce, ca;
245 double re, ge, be;
246
247 if (intens(r->cext) <= 1./FHUGE)
248 return; /* no medium */
249 re = r->rot*colval(r->cext,RED);
250 ge = r->rot*colval(r->cext,GRN);
251 be = r->rot*colval(r->cext,BLU);
252 if (r->crtype & SHADOW) { /* no scattering for sources */
253 re *= 1. - colval(r->albedo,RED);
254 ge *= 1. - colval(r->albedo,GRN);
255 be *= 1. - colval(r->albedo,BLU);
256 }
257 setcolor(ce, re<=FTINY ? 1. : re>92. ? 0. : exp(-re),
258 ge<=FTINY ? 1. : ge>92. ? 0. : exp(-ge),
259 be<=FTINY ? 1. : be>92. ? 0. : exp(-be));
260 multcolor(r->rcol, ce); /* path extinction */
261 if (r->crtype & SHADOW || intens(r->albedo) <= FTINY)
262 return; /* no scattering */
263
264 /* PMAP: indirect inscattering accounted for by volume photons? */
265 if (!volumePhotonMapping) {
266 setcolor(ca,
267 colval(r->albedo,RED)*colval(ambval,RED)*(1.-colval(ce,RED)),
268 colval(r->albedo,GRN)*colval(ambval,GRN)*(1.-colval(ce,GRN)),
269 colval(r->albedo,BLU)*colval(ambval,BLU)*(1.-colval(ce,BLU)));
270 addcolor(r->rcol, ca); /* ambient in scattering */
271 }
272
273 srcscatter(r); /* source in scattering */
274 }
275
276
277 void
278 raytexture( /* get material modifiers */
279 RAY *r,
280 OBJECT mod
281 )
282 {
283 OBJREC *m;
284 /* execute textures and patterns */
285 for ( ; mod != OVOID; mod = m->omod) {
286 m = objptr(mod);
287 /****** unnecessary test since modifier() is always called
288 if (!ismodifier(m->otype)) {
289 sprintf(errmsg, "illegal modifier \"%s\"", m->oname);
290 error(USER, errmsg);
291 }
292 ******/
293 if ((*ofun[m->otype].funp)(m, r)) {
294 sprintf(errmsg, "conflicting material \"%s\"",
295 m->oname);
296 objerror(r->ro, USER, errmsg);
297 }
298 }
299 }
300
301
302 int
303 raymixture( /* mix modifiers */
304 RAY *r,
305 OBJECT fore,
306 OBJECT back,
307 double coef
308 )
309 {
310 RAY fr, br;
311 double mfore, mback;
312 int foremat, backmat;
313 int i;
314 /* bound coefficient */
315 if (coef > 1.0)
316 coef = 1.0;
317 else if (coef < 0.0)
318 coef = 0.0;
319 /* compute foreground and background */
320 foremat = backmat = 0;
321 /* foreground */
322 fr = *r;
323 if (coef > FTINY) {
324 fr.rweight *= coef;
325 scalecolor(fr.rcoef, coef);
326 foremat = rayshade(&fr, fore);
327 }
328 /* background */
329 br = *r;
330 if (coef < 1.0-FTINY) {
331 br.rweight *= 1.0-coef;
332 scalecolor(br.rcoef, 1.0-coef);
333 backmat = rayshade(&br, back);
334 }
335 /* check for transparency */
336 if (backmat ^ foremat) {
337 if (backmat && coef > FTINY)
338 raytrans(&fr);
339 else if (foremat && coef < 1.0-FTINY)
340 raytrans(&br);
341 }
342 /* mix perturbations */
343 for (i = 0; i < 3; i++)
344 r->pert[i] = coef*fr.pert[i] + (1.0-coef)*br.pert[i];
345 /* mix pattern colors */
346 scalecolor(fr.pcol, coef);
347 scalecolor(br.pcol, 1.0-coef);
348 copycolor(r->pcol, fr.pcol);
349 addcolor(r->pcol, br.pcol);
350 /* return value tells if material */
351 if (!foremat & !backmat)
352 return(0);
353 /* mix returned ray values */
354 scalecolor(fr.rcol, coef);
355 scalecolor(br.rcol, 1.0-coef);
356 copycolor(r->rcol, fr.rcol);
357 addcolor(r->rcol, br.rcol);
358 mfore = bright(fr.mcol); mback = bright(br.mcol);
359 r->rmt = mfore > mback ? fr.rmt : br.rmt;
360 r->rxt = bright(fr.rcol)-mfore > bright(br.rcol)-mback ?
361 fr.rxt : br.rxt;
362 return(1);
363 }
364
365
366 double
367 raydist( /* compute (cumulative) ray distance */
368 const RAY *r,
369 int flags
370 )
371 {
372 double sum = 0.0;
373
374 while (r != NULL && r->crtype&flags) {
375 sum += r->rot;
376 r = r->parent;
377 }
378 return(sum);
379 }
380
381
382 void
383 raycontrib( /* compute (cumulative) ray contribution */
384 RREAL rc[3],
385 const RAY *r,
386 int flags
387 )
388 {
389 double eext[3];
390 int i;
391
392 eext[0] = eext[1] = eext[2] = 0.;
393 rc[0] = rc[1] = rc[2] = 1.;
394
395 while (r != NULL && r->crtype&flags) {
396 for (i = 3; i--; ) {
397 rc[i] *= colval(r->rcoef,i);
398 eext[i] += r->rot * colval(r->cext,i);
399 }
400 r = r->parent;
401 }
402 for (i = 3; i--; )
403 rc[i] *= (eext[i] <= FTINY) ? 1. :
404 (eext[i] > 92.) ? 0. : exp(-eext[i]);
405 }
406
407
408 double
409 raynormal( /* compute perturbed normal for ray */
410 FVECT norm,
411 RAY *r
412 )
413 {
414 double newdot;
415 int i;
416
417 /* The perturbation is added to the surface normal to obtain
418 * the new normal. If the new normal would affect the surface
419 * orientation wrt. the ray, a correction is made. The method is
420 * still fraught with problems since reflected rays and similar
421 * directions calculated from the surface normal may spawn rays behind
422 * the surface. The only solution is to curb textures at high
423 * incidence (namely, keep DOT(rdir,pert) < Rdot).
424 */
425
426 for (i = 0; i < 3; i++)
427 norm[i] = r->ron[i] + r->pert[i];
428
429 if (normalize(norm) == 0.0) {
430 objerror(r->ro, WARNING, "illegal normal perturbation");
431 VCOPY(norm, r->ron);
432 return(r->rod);
433 }
434 newdot = -DOT(norm, r->rdir);
435 if ((newdot > 0.0) != (r->rod > 0.0)) { /* fix orientation */
436 for (i = 0; i < 3; i++)
437 norm[i] += 2.0*newdot*r->rdir[i];
438 newdot = -newdot;
439 }
440 return(newdot);
441 }
442
443
444 void
445 newrayxf( /* get new tranformation matrix for ray */
446 RAY *r
447 )
448 {
449 static struct xfn {
450 struct xfn *next;
451 FULLXF xf;
452 } xfseed = { &xfseed }, *xflast = &xfseed;
453 struct xfn *xp;
454 const RAY *rp;
455
456 /*
457 * Search for transform in circular list that
458 * has no associated ray in the tree.
459 */
460 xp = xflast;
461 for (rp = r->parent; rp != NULL; rp = rp->parent)
462 if (rp->rox == &xp->xf) { /* xp in use */
463 xp = xp->next; /* move to next */
464 if (xp == xflast) { /* need new one */
465 xp = (struct xfn *)bmalloc(sizeof(struct xfn));
466 if (xp == NULL)
467 error(SYSTEM,
468 "out of memory in newrayxf");
469 /* insert in list */
470 xp->next = xflast->next;
471 xflast->next = xp;
472 break; /* we're done */
473 }
474 rp = r; /* start check over */
475 }
476 /* got it */
477 r->rox = &xp->xf;
478 xflast = xp;
479 }
480
481
482 void
483 flipsurface( /* reverse surface orientation */
484 RAY *r
485 )
486 {
487 r->rod = -r->rod;
488 r->ron[0] = -r->ron[0];
489 r->ron[1] = -r->ron[1];
490 r->ron[2] = -r->ron[2];
491 r->pert[0] = -r->pert[0];
492 r->pert[1] = -r->pert[1];
493 r->pert[2] = -r->pert[2];
494 }
495
496
497 void
498 rayhit( /* standard ray hit test */
499 OBJECT *oset,
500 RAY *r
501 )
502 {
503 OBJREC *o;
504 int i;
505
506 for (i = oset[0]; i > 0; i--) {
507 o = objptr(oset[i]);
508 if ((*ofun[o->otype].funp)(o, r))
509 r->robj = oset[i];
510 }
511 }
512
513
514 int
515 localhit( /* check for hit in the octree */
516 RAY *r,
517 CUBE *scene
518 )
519 {
520 OBJECT cxset[MAXCSET+1]; /* set of checked objects */
521 FVECT curpos; /* current cube position */
522 int sflags; /* sign flags */
523 double t, dt;
524 int i;
525
526 nrays++; /* increment trace counter */
527 sflags = 0;
528 for (i = 0; i < 3; i++) {
529 curpos[i] = r->rorg[i];
530 if (r->rdir[i] > 1e-7)
531 sflags |= 1 << i;
532 else if (r->rdir[i] < -1e-7)
533 sflags |= 0x10 << i;
534 }
535 if (!sflags) {
536 error(WARNING, "zero ray direction in localhit");
537 return(0);
538 }
539 /* start off assuming nothing hit */
540 if (r->rmax > FTINY) { /* except aft plane if one */
541 r->ro = &Aftplane;
542 r->rot = r->rmax;
543 VSUM(r->rop, r->rorg, r->rdir, r->rot);
544 }
545 /* find global cube entrance point */
546 t = 0.0;
547 if (!incube(scene, curpos)) {
548 /* find distance to entry */
549 for (i = 0; i < 3; i++) {
550 /* plane in our direction */
551 if (sflags & 1<<i)
552 dt = scene->cuorg[i];
553 else if (sflags & 0x10<<i)
554 dt = scene->cuorg[i] + scene->cusize;
555 else
556 continue;
557 /* distance to the plane */
558 dt = (dt - r->rorg[i])/r->rdir[i];
559 if (dt > t)
560 t = dt; /* farthest face is the one */
561 }
562 t += FTINY; /* fudge to get inside cube */
563 if (t >= r->rot) /* clipped already */
564 return(0);
565 /* advance position */
566 VSUM(curpos, curpos, r->rdir, t);
567
568 if (!incube(scene, curpos)) /* non-intersecting ray */
569 return(0);
570 }
571 cxset[0] = 0;
572 raymove(curpos, cxset, sflags, r, scene);
573 return((r->ro != NULL) & (r->ro != &Aftplane));
574 }
575
576
577 static int
578 raymove( /* check for hit as we move */
579 FVECT pos, /* current position, modified herein */
580 OBJECT *cxs, /* checked objects, modified by checkhit */
581 int dirf, /* direction indicators to speed tests */
582 RAY *r,
583 CUBE *cu
584 )
585 {
586 int ax;
587 double dt, t;
588
589 if (istree(cu->cutree)) { /* recurse on subcubes */
590 CUBE cukid;
591 int br, sgn;
592
593 cukid.cusize = cu->cusize * 0.5; /* find subcube */
594 VCOPY(cukid.cuorg, cu->cuorg);
595 br = 0;
596 if (pos[0] >= cukid.cuorg[0]+cukid.cusize) {
597 cukid.cuorg[0] += cukid.cusize;
598 br |= 1;
599 }
600 if (pos[1] >= cukid.cuorg[1]+cukid.cusize) {
601 cukid.cuorg[1] += cukid.cusize;
602 br |= 2;
603 }
604 if (pos[2] >= cukid.cuorg[2]+cukid.cusize) {
605 cukid.cuorg[2] += cukid.cusize;
606 br |= 4;
607 }
608 for ( ; ; ) {
609 cukid.cutree = octkid(cu->cutree, br);
610 if ((ax = raymove(pos,cxs,dirf,r,&cukid)) == RAYHIT)
611 return(RAYHIT);
612 sgn = 1 << ax;
613 if (sgn & dirf) /* positive axis? */
614 if (sgn & br)
615 return(ax); /* overflow */
616 else {
617 cukid.cuorg[ax] += cukid.cusize;
618 br |= sgn;
619 }
620 else
621 if (sgn & br) {
622 cukid.cuorg[ax] -= cukid.cusize;
623 br &= ~sgn;
624 } else
625 return(ax); /* underflow */
626 }
627 /*NOTREACHED*/
628 }
629 if (isfull(cu->cutree)) {
630 if (checkhit(r, cu, cxs))
631 return(RAYHIT);
632 } else if (r->ro == &Aftplane && incube(cu, r->rop))
633 return(RAYHIT);
634 /* advance to next cube */
635 if (dirf&0x11) {
636 dt = dirf&1 ? cu->cuorg[0] + cu->cusize : cu->cuorg[0];
637 t = (dt - pos[0])/r->rdir[0];
638 ax = 0;
639 } else
640 t = FHUGE;
641 if (dirf&0x22) {
642 dt = dirf&2 ? cu->cuorg[1] + cu->cusize : cu->cuorg[1];
643 dt = (dt - pos[1])/r->rdir[1];
644 if (dt < t) {
645 t = dt;
646 ax = 1;
647 }
648 }
649 if (dirf&0x44) {
650 dt = dirf&4 ? cu->cuorg[2] + cu->cusize : cu->cuorg[2];
651 dt = (dt - pos[2])/r->rdir[2];
652 if (dt < t) {
653 t = dt;
654 ax = 2;
655 }
656 }
657 VSUM(pos, pos, r->rdir, t);
658 return(ax);
659 }
660
661
662 static int
663 checkhit( /* check for hit in full cube */
664 RAY *r,
665 CUBE *cu,
666 OBJECT *cxs
667 )
668 {
669 OBJECT oset[MAXSET+1];
670
671 objset(oset, cu->cutree);
672 checkset(oset, cxs); /* avoid double-checking */
673
674 (*r->hitf)(oset, r); /* test for hit in set */
675
676 if (r->robj == OVOID)
677 return(0); /* no scores yet */
678
679 return(incube(cu, r->rop)); /* hit OK if in current cube */
680 }
681
682
683 static void
684 checkset( /* modify checked set and set to check */
685 OBJECT *os, /* os' = os - cs */
686 OBJECT *cs /* cs' = cs + os */
687 )
688 {
689 OBJECT cset[MAXCSET+MAXSET+1];
690 int i, j;
691 int k;
692 /* copy os in place, cset <- cs */
693 cset[0] = 0;
694 k = 0;
695 for (i = j = 1; i <= os[0]; i++) {
696 while (j <= cs[0] && cs[j] < os[i])
697 cset[++cset[0]] = cs[j++];
698 if (j > cs[0] || os[i] != cs[j]) { /* object to check */
699 os[++k] = os[i];
700 cset[++cset[0]] = os[i];
701 }
702 }
703 if (!(os[0] = k)) /* new "to check" set size */
704 return; /* special case */
705 while (j <= cs[0]) /* get the rest of cs */
706 cset[++cset[0]] = cs[j++];
707 if (cset[0] > MAXCSET) /* truncate "checked" set if nec. */
708 cset[0] = MAXCSET;
709 /* setcopy(cs, cset); */ /* copy cset back to cs */
710 os = cset;
711 for (i = os[0]; i-- >= 0; )
712 *cs++ = *os++;
713 }