ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.8 by greg, Fri Sep 17 21:43:50 2004 UTC vs.
Revision 2.20 by greg, Tue Dec 2 23:28:34 2008 UTC

# Line 23 | Line 23 | static const char      RCSid[] = "$Id$";
23   *  The first step is opening one or more rendering processes
24   *  with a call to ray_pinit(oct, nproc).  Before calling fork(),
25   *  ray_pinit() loads the octree and data structures into the
26 < *  caller's memory.  This permits all sorts of queries that
27 < *  wouldn't be possible otherwise, without causing any real
26 > *  caller's memory, and ray_popen() synchronizes the ambient
27 > *  file, if any.  Shared memory permits all sorts of queries
28 > *  that wouldn't be possible otherwise, without causing any real
29   *  memory overhead, since all the static data are shared
30   *  between processes.  Rays are then traced using a simple
31   *  queuing mechanism, explained below.
32   *
33 < *  The ray queue holds as many rays as there are rendering
34 < *  processes.  Rays are queued and returned by a single
33 > *  The ray queue buffers RAYQLEN rays before sending to
34 > *  children, each of which may internally buffer RAYQLEN rays.
35 > *
36 > *  Rays are queued and returned by a single
37   *  ray_pqueue() call.  A ray_pqueue() return
38   *  value of 0 indicates that no rays are ready
39   *  and the queue is not yet full.  A return value of 1
# Line 43 | Line 46 | static const char      RCSid[] = "$Id$";
46   *      myRay.rorg = ( ray origin point )
47   *      myRay.rdir = ( normalized ray direction )
48   *      myRay.rmax = ( maximum length, or zero for no limit )
49 < *      rayorigin(&myRay, NULL, PRIMARY, 1.0);
49 > *      rayorigin(&myRay, PRIMARY, NULL, NULL);
50   *      myRay.rno = ( my personal ray identifier )
51   *      if (ray_pqueue(&myRay) == 1)
52   *              { do something with results }
# Line 105 | Line 108 | static const char      RCSid[] = "$Id$";
108   *  Note:  These routines are written to coordinate with the
109   *  definitions in raycalls.c, and in fact depend on them.
110   *  If you want to trace a ray and get a result synchronously,
111 < *  use the ray_trace() call to compute it in the parent process
111 > *  use the ray_trace() call to compute it in the parent process.
112   *  This will not interfere with any subprocess calculations,
113   *  but beware that a fatal error may end with a call to quit().
114   *
# Line 128 | Line 131 | static const char      RCSid[] = "$Id$";
131   *  process should not be compromised.
132   */
133  
131 #include <stdio.h>
132 #include <sys/types.h>
133 #include <sys/wait.h> /* XXX platform */
134
134   #include  "rtprocess.h"
135   #include  "ray.h"
136   #include  "ambient.h"
137 + #include  <sys/types.h>
138 + #include  <sys/wait.h>
139   #include  "selcall.h"
140  
141   #ifndef RAYQLEN
142 < #define RAYQLEN         16              /* # rays to send at once */
142 > #define RAYQLEN         12              /* # rays to send at once */
143   #endif
144  
145   #ifndef MAX_RPROCS
# Line 170 | Line 171 | static int     r_recv_next;            /* next receive ray placement
171   #define sendq_full()    (r_send_next >= RAYQLEN)
172  
173   static int ray_pflush(void);
174 < static void ray_pchild(int      fd_in, int      fd_out);
174 > static void ray_pchild(int fd_in, int fd_out);
175  
176  
177   extern void
# Line 184 | Line 185 | ray_pinit(             /* initialize ray-tracing processes */
185  
186          ray_init(otnm);                 /* load the shared scene */
187  
187        preload_objs();                 /* preload auxiliary data */
188
189                                        /* set shared memory boundary */
190        shm_boundary = (char *)malloc(16);
191        strcpy(shm_boundary, "SHM_BOUNDARY");
192
188          r_send_next = 0;                /* set up queue */
189          r_recv_first = r_recv_next = RAYQLEN;
190  
# Line 243 | Line 238 | ray_psend(                     /* add a ray to our send queue */
238          if (sendq_full() && ray_pflush() <= 0)
239                  error(INTERNAL, "ray_pflush failed in ray_psend");
240  
241 <        r_queue[r_send_next] = *r;
247 <        r_send_next++;
241 >        r_queue[r_send_next++] = *r;
242   }
243  
244  
# Line 257 | Line 251 | ray_pqueue(                    /* queue a ray for computation */
251                  return(0);
252                                          /* check for full send queue */
253          if (sendq_full()) {
254 <                RAY     mySend;
261 <                int     rval;
262 <                mySend = *r;
254 >                RAY     mySend = *r;
255                                          /* wait for a result */
256 <                rval = ray_presult(r, 0);
256 >                if (ray_presult(r, 0) <= 0)
257 >                        return(-1);
258                                          /* put new ray in queue */
259 <                r_queue[r_send_next] = mySend;
260 <                r_send_next++;
261 <                return(rval);           /* done */
259 >                r_queue[r_send_next++] = mySend;
260 >                                /* XXX r_send_next may now be > RAYQLEN */
261 >                return(1);
262          }
263 <                                        /* add ray to send queue */
264 <        r_queue[r_send_next] = *r;
272 <        r_send_next++;
263 >                                        /* else add ray to send queue */
264 >        r_queue[r_send_next++] = *r;
265                                          /* check for returned ray... */
266          if (r_recv_first >= r_recv_next)
267                  return(0);
268                                          /* ...one is sitting in queue */
269 <        *r = r_queue[r_recv_first];
278 <        r_recv_first++;
269 >        *r = r_queue[r_recv_first++];
270          return(1);
271   }
272  
# Line 295 | Line 286 | ray_presult(           /* check for a completed ray */
286                  return(0);
287                                          /* check queued results first */
288          if (r_recv_first < r_recv_next) {
289 <                *r = r_queue[r_recv_first];
299 <                r_recv_first++;
289 >                *r = r_queue[r_recv_first++];
290                  return(1);
291          }
292          n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
# Line 310 | Line 300 | ray_presult(           /* check for a completed ray */
300                  n = ray_pnprocs - ray_pnidle;
301          if (n <= 0)                     /* return if nothing to await */
302                  return(0);
303 +        if (!poll && ray_pnprocs == 1)  /* one process -> skip select() */
304 +                FD_SET(r_proc[0].fd_recv, &readset);
305 +
306   getready:                               /* any children waiting for us? */
307          for (pn = ray_pnprocs; pn--; )
308                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
# Line 370 | Line 363 | getready:                              /* any children waiting for us? */
363                  rp->slights = NULL;
364          }
365                                          /* return first ray received */
366 <        *r = r_queue[r_recv_first];
374 <        r_recv_first++;
366 >        *r = r_queue[r_recv_first++];
367          return(1);
368   }
369  
# Line 399 | Line 391 | ray_pchild(    /* process rays (never returns) */
391   {
392          int     n;
393          register int    i;
394 +                                        /* flag child process for quit() */
395 +        ray_pnprocs = -1;
396                                          /* read each ray request set */
397          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
398                  int     n2;
399 <                if (n % sizeof(RAY))
399 >                if (n < sizeof(RAY))
400                          break;
407                n /= sizeof(RAY);
401                                          /* get smuggled set length */
402 <                n2 = r_queue[0].crtype - n;
402 >                n2 = sizeof(RAY)*r_queue[0].crtype - n;
403                  if (n2 < 0)
404                          error(INTERNAL, "buffer over-read in ray_pchild");
405                  if (n2 > 0) {           /* read the rest of the set */
406 <                        i = readbuf(fd_in, (char *)(r_queue+n),
407 <                                        sizeof(RAY)*n2);
415 <                        if (i != sizeof(RAY)*n2)
406 >                        i = readbuf(fd_in, (char *)r_queue + n, n2);
407 >                        if (i != n2)
408                                  break;
409                          n += n2;
410                  }
411 +                n /= sizeof(RAY);
412                                          /* evaluate rays */
413                  for (i = 0; i < n; i++) {
414                          r_queue[i].crtype = r_queue[i].rtype;
415                          r_queue[i].parent = NULL;
416                          r_queue[i].clipset = NULL;
417                          r_queue[i].slights = NULL;
425                        r_queue[i].revf = raytrace;
418                          samplendx++;
419                          rayclear(&r_queue[i]);
420                          rayvalue(&r_queue[i]);
# Line 449 | Line 441 | ray_popen(                     /* open the specified # processes */
441                  nadd = MAX_NPROCS - ray_pnprocs;
442          if (nadd <= 0)
443                  return;
444 <        fflush(stderr);                 /* clear pending output */
445 <        fflush(stdout);
444 >        ambsync();                      /* load any new ambient values */
445 >        if (shm_boundary == NULL) {     /* first child process? */
446 >                preload_objs();         /* preload auxiliary data */
447 >                                        /* set shared memory boundary */
448 >                shm_boundary = (char *)malloc(16);
449 >                strcpy(shm_boundary, "SHM_BOUNDARY");
450 >        }
451 >        fflush(NULL);                   /* clear pending output */
452          while (nadd--) {                /* fork each new process */
453                  int     p0[2], p1[2];
454                  if (pipe(p0) < 0 || pipe(p1) < 0)
# Line 468 | Line 466 | ray_popen(                     /* open the specified # processes */
466                  if (r_proc[ray_pnprocs].pid < 0)
467                          error(SYSTEM, "cannot fork child process");
468                  close(p1[0]); close(p0[1]);
469 +                /*
470 +                 * Close write stream on exec to avoid multiprocessing deadlock.
471 +                 * No use in read stream without it, so set flag there as well.
472 +                 */
473 +                fcntl(p1[1], F_SETFD, FD_CLOEXEC);
474 +                fcntl(p0[0], F_SETFD, FD_CLOEXEC);
475                  r_proc[ray_pnprocs].fd_send = p1[1];
476                  r_proc[ray_pnprocs].fd_recv = p0[0];
477                  r_proc[ray_pnprocs].npending = 0;
# Line 518 | Line 522 | void
522   quit(ec)                        /* make sure exit is called */
523   int     ec;
524   {
525 +        if (ray_pnprocs > 0)    /* close children if any */
526 +                ray_pclose(0);          
527          exit(ec);
528   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines