ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.7 by greg, Fri Sep 17 14:27:33 2004 UTC vs.
Revision 2.21 by greg, Sat Dec 12 00:03:42 2009 UTC

# Line 13 | Line 13 | static const char      RCSid[] = "$Id$";
13   *  These calls are designed similarly to the ones in raycalls.c,
14   *  but allow for multiple rendering processes on the same host
15   *  machine.  There is no sense in specifying more child processes
16 < *  than you have processors, but one child may help by allowing
16 > *  than you have processor cores, but one child may help by allowing
17   *  asynchronous ray computation in an interactive program, and
18   *  will protect the caller from fatal rendering errors.
19   *
20 < *  You should first read and undrstand the header in raycalls.c,
20 > *  You should first read and understand the header in raycalls.c,
21   *  as some things are explained there that are not repated here.
22   *
23   *  The first step is opening one or more rendering processes
24   *  with a call to ray_pinit(oct, nproc).  Before calling fork(),
25   *  ray_pinit() loads the octree and data structures into the
26 < *  caller's memory.  This permits all sorts of queries that
27 < *  wouldn't be possible otherwise, without causing any real
26 > *  caller's memory, and ray_popen() synchronizes the ambient
27 > *  file, if any.  Shared memory permits all sorts of queries
28 > *  that wouldn't be possible otherwise without causing any real
29   *  memory overhead, since all the static data are shared
30 < *  between processes.  Rays are then traced using a simple
30 > *  between processes.  Rays are traced using a simple
31   *  queuing mechanism, explained below.
32   *
33 < *  The ray queue holds as many rays as there are rendering
34 < *  processes.  Rays are queued and returned by a single
33 > *  The ray queue buffers RAYQLEN rays before sending to
34 > *  children, each of which may internally buffer RAYQLEN rays
35 > *  during evaluation.  Rays are not returned in the order
36 > *  they are sent when multiple processes are open.
37 > *
38 > *  Rays are queued and returned by a single
39   *  ray_pqueue() call.  A ray_pqueue() return
40   *  value of 0 indicates that no rays are ready
41   *  and the queue is not yet full.  A return value of 1
# Line 43 | Line 48 | static const char      RCSid[] = "$Id$";
48   *      myRay.rorg = ( ray origin point )
49   *      myRay.rdir = ( normalized ray direction )
50   *      myRay.rmax = ( maximum length, or zero for no limit )
51 < *      rayorigin(&myRay, NULL, PRIMARY, 1.0);
51 > *      rayorigin(&myRay, PRIMARY, NULL, NULL);
52   *      myRay.rno = ( my personal ray identifier )
53   *      if (ray_pqueue(&myRay) == 1)
54   *              { do something with results }
# Line 70 | Line 75 | static const char      RCSid[] = "$Id$";
75   *  until a value is available, returning 0 only if the
76   *  queue is completely empty.  A negative return value
77   *  indicates that a rendering process died.  If this
78 < *  happens, ray_close(0) is automatically called to close
78 > *  happens, ray_pclose(0) is automatically called to close
79   *  all child processes, and ray_pnprocs is set to zero.
80   *
81   *  If you just want to fill the ray queue without checking for
# Line 90 | Line 95 | static const char      RCSid[] = "$Id$";
95   *  Any queued ray calculations will be awaited and discarded.
96   *  As with ray_done(), ray_pdone(0) hangs onto data files
97   *  and fonts that are likely to be used in subsequent renderings.
98 < *  Whether you want to bother cleaning up memory or not, you
99 < *  should at least call ray_pclose(0) to clean the child processes.
98 > *  Whether you need to clean up memory or not, you should
99 > *  at least call ray_pclose(0) to await the child processes.
100   *
101   *  Warning:  You cannot affect any of the rendering processes
102   *  by changing global parameter values onece ray_pinit() has
# Line 105 | Line 110 | static const char      RCSid[] = "$Id$";
110   *  Note:  These routines are written to coordinate with the
111   *  definitions in raycalls.c, and in fact depend on them.
112   *  If you want to trace a ray and get a result synchronously,
113 < *  use the ray_trace() call to compute it in the parent process
113 > *  use the ray_trace() call to compute it in the parent process.
114   *  This will not interfere with any subprocess calculations,
115   *  but beware that a fatal error may end with a call to quit().
116   *
# Line 121 | Line 126 | static const char      RCSid[] = "$Id$";
126   *  returning a negative value from ray_pqueue() or
127   *  ray_presult().  If you get a negative value from either
128   *  of these calls, you can assume that the processes have
129 < *  been cleaned up with a call to ray_close(), though you
129 > *  been cleaned up with a call to ray_pclose(), though you
130   *  will have to call ray_pdone() yourself if you want to
131   *  free memory.  Obviously, you cannot continue rendering
132   *  without risking further errors, but otherwise your
133   *  process should not be compromised.
134   */
135  
131 #include <stdio.h>
132 #include <sys/types.h>
133 #include <sys/wait.h> /* XXX platform */
134
136   #include  "rtprocess.h"
137   #include  "ray.h"
138   #include  "ambient.h"
139 + #include  <sys/types.h>
140 + #include  <sys/wait.h>
141   #include  "selcall.h"
142  
143   #ifndef RAYQLEN
144 < #define RAYQLEN         16              /* # rays to send at once */
144 > #define RAYQLEN         12              /* # rays to send at once */
145   #endif
146  
147   #ifndef MAX_RPROCS
# Line 151 | Line 154 | static const char      RCSid[] = "$Id$";
154  
155   extern char     *shm_boundary;          /* boundary of shared memory */
156  
157 + int             ray_pfifo = 0;          /* maintain ray call order? */
158   int             ray_pnprocs = 0;        /* number of child processes */
159   int             ray_pnidle = 0;         /* number of idle children */
160  
# Line 159 | Line 163 | static struct child_proc {
163          int     fd_send;                        /* write to child here */
164          int     fd_recv;                        /* read from child here */
165          int     npending;                       /* # rays in process */
166 <        unsigned long  rno[RAYQLEN];            /* working on these rays */
166 >        RNUMBER rno[RAYQLEN];                   /* working on these rays */
167   } r_proc[MAX_NPROCS];                   /* our child processes */
168  
169   static RAY      r_queue[2*RAYQLEN];     /* ray i/o buffer */
# Line 170 | Line 174 | static int     r_recv_next;            /* next receive ray placement
174   #define sendq_full()    (r_send_next >= RAYQLEN)
175  
176   static int ray_pflush(void);
177 < static void ray_pchild(int      fd_in, int      fd_out);
177 > static void ray_pchild(int fd_in, int fd_out);
178  
179  
180   extern void
# Line 184 | Line 188 | ray_pinit(             /* initialize ray-tracing processes */
188  
189          ray_init(otnm);                 /* load the shared scene */
190  
187        preload_objs();                 /* preload auxiliary data */
188
189                                        /* set shared memory boundary */
190        shm_boundary = (char *)malloc(16);
191        strcpy(shm_boundary, "SHM_BOUNDARY");
192
191          r_send_next = 0;                /* set up queue */
192          r_recv_first = r_recv_next = RAYQLEN;
193  
# Line 243 | Line 241 | ray_psend(                     /* add a ray to our send queue */
241          if (sendq_full() && ray_pflush() <= 0)
242                  error(INTERNAL, "ray_pflush failed in ray_psend");
243  
244 <        r_queue[r_send_next] = *r;
247 <        r_send_next++;
244 >        r_queue[r_send_next++] = *r;
245   }
246  
247  
# Line 257 | Line 254 | ray_pqueue(                    /* queue a ray for computation */
254                  return(0);
255                                          /* check for full send queue */
256          if (sendq_full()) {
257 <                RAY     mySend;
261 <                int     rval;
262 <                mySend = *r;
257 >                RAY     mySend = *r;
258                                          /* wait for a result */
259 <                rval = ray_presult(r, 0);
259 >                if (ray_presult(r, 0) <= 0)
260 >                        return(-1);
261                                          /* put new ray in queue */
262 <                r_queue[r_send_next] = mySend;
263 <                r_send_next++;
264 <                return(rval);           /* done */
262 >                r_queue[r_send_next++] = mySend;
263 >                                /* XXX r_send_next may now be > RAYQLEN */
264 >                return(1);
265          }
266 <                                        /* add ray to send queue */
267 <        r_queue[r_send_next] = *r;
272 <        r_send_next++;
266 >                                        /* else add ray to send queue */
267 >        r_queue[r_send_next++] = *r;
268                                          /* check for returned ray... */
269          if (r_recv_first >= r_recv_next)
270                  return(0);
271                                          /* ...one is sitting in queue */
272 <        *r = r_queue[r_recv_first];
278 <        r_recv_first++;
272 >        *r = r_queue[r_recv_first++];
273          return(1);
274   }
275  
# Line 295 | Line 289 | ray_presult(           /* check for a completed ray */
289                  return(0);
290                                          /* check queued results first */
291          if (r_recv_first < r_recv_next) {
292 <                *r = r_queue[r_recv_first];
299 <                r_recv_first++;
292 >                *r = r_queue[r_recv_first++];
293                  return(1);
294          }
295          n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
# Line 310 | Line 303 | ray_presult(           /* check for a completed ray */
303                  n = ray_pnprocs - ray_pnidle;
304          if (n <= 0)                     /* return if nothing to await */
305                  return(0);
306 +        if (!poll && ray_pnprocs == 1)  /* one process -> skip select() */
307 +                FD_SET(r_proc[0].fd_recv, &readset);
308 +
309   getready:                               /* any children waiting for us? */
310          for (pn = ray_pnprocs; pn--; )
311                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
# Line 370 | Line 366 | getready:                              /* any children waiting for us? */
366                  rp->slights = NULL;
367          }
368                                          /* return first ray received */
369 <        *r = r_queue[r_recv_first];
374 <        r_recv_first++;
369 >        *r = r_queue[r_recv_first++];
370          return(1);
371   }
372  
# Line 399 | Line 394 | ray_pchild(    /* process rays (never returns) */
394   {
395          int     n;
396          register int    i;
397 +                                        /* flag child process for quit() */
398 +        ray_pnprocs = -1;
399                                          /* read each ray request set */
400          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
401                  int     n2;
402 <                if (n % sizeof(RAY))
402 >                if (n < sizeof(RAY))
403                          break;
407                n /= sizeof(RAY);
404                                          /* get smuggled set length */
405 <                n2 = r_queue[0].crtype - n;
405 >                n2 = sizeof(RAY)*r_queue[0].crtype - n;
406                  if (n2 < 0)
407                          error(INTERNAL, "buffer over-read in ray_pchild");
408                  if (n2 > 0) {           /* read the rest of the set */
409 <                        i = readbuf(fd_in, (char *)(r_queue+n),
410 <                                        sizeof(RAY)*n2);
415 <                        if (i != sizeof(RAY)*n2)
409 >                        i = readbuf(fd_in, (char *)r_queue + n, n2);
410 >                        if (i != n2)
411                                  break;
412                          n += n2;
413                  }
414 +                n /= sizeof(RAY);
415                                          /* evaluate rays */
416                  for (i = 0; i < n; i++) {
417                          r_queue[i].crtype = r_queue[i].rtype;
418                          r_queue[i].parent = NULL;
419                          r_queue[i].clipset = NULL;
420                          r_queue[i].slights = NULL;
421 <                        r_queue[i].revf = raytrace;
421 >                        r_queue[i].rlvl = 0;
422                          samplendx++;
423                          rayclear(&r_queue[i]);
424                          rayvalue(&r_queue[i]);
# Line 449 | Line 445 | ray_popen(                     /* open the specified # processes */
445                  nadd = MAX_NPROCS - ray_pnprocs;
446          if (nadd <= 0)
447                  return;
448 <        fflush(stderr);                 /* clear pending output */
449 <        fflush(stdout);
448 >        ambsync();                      /* load any new ambient values */
449 >        if (shm_boundary == NULL) {     /* first child process? */
450 >                preload_objs();         /* preload auxiliary data */
451 >                                        /* set shared memory boundary */
452 >                shm_boundary = (char *)malloc(16);
453 >                strcpy(shm_boundary, "SHM_BOUNDARY");
454 >        }
455 >        fflush(NULL);                   /* clear pending output */
456          while (nadd--) {                /* fork each new process */
457                  int     p0[2], p1[2];
458                  if (pipe(p0) < 0 || pipe(p1) < 0)
# Line 468 | Line 470 | ray_popen(                     /* open the specified # processes */
470                  if (r_proc[ray_pnprocs].pid < 0)
471                          error(SYSTEM, "cannot fork child process");
472                  close(p1[0]); close(p0[1]);
473 +                /*
474 +                 * Close write stream on exec to avoid multiprocessing deadlock.
475 +                 * No use in read stream without it, so set flag there as well.
476 +                 */
477 +                fcntl(p1[1], F_SETFD, FD_CLOEXEC);
478 +                fcntl(p0[0], F_SETFD, FD_CLOEXEC);
479                  r_proc[ray_pnprocs].fd_send = p1[1];
480                  r_proc[ray_pnprocs].fd_recv = p0[0];
481                  r_proc[ray_pnprocs].npending = 0;
# Line 500 | Line 508 | ray_pclose(            /* close one or more child processes */
508                  ray_pnprocs--;
509                  close(r_proc[ray_pnprocs].fd_recv);
510                  close(r_proc[ray_pnprocs].fd_send);
511 <                while (wait(&status) != r_proc[ray_pnprocs].pid)
512 <                        ;
511 >                if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
512 >                        status = 127<<8;
513                  if (status) {
514                          sprintf(errmsg,
515                                  "rendering process %d exited with code %d",
# Line 518 | Line 526 | void
526   quit(ec)                        /* make sure exit is called */
527   int     ec;
528   {
529 +        if (ray_pnprocs > 0)    /* close children if any */
530 +                ray_pclose(0);          
531          exit(ec);
532   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines