ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.1 by greg, Sat Feb 22 02:07:29 2003 UTC vs.
Revision 2.21 by greg, Sat Dec 12 00:03:42 2009 UTC

# Line 7 | Line 7 | static const char      RCSid[] = "$Id$";
7   *  External symbols declared in ray.h
8   */
9  
10 < /* ====================================================================
11 < * The Radiance Software License, Version 1.0
12 < *
13 < * Copyright (c) 1990 - 2002 The Regents of the University of California,
14 < * through Lawrence Berkeley National Laboratory.   All rights reserved.
15 < *
16 < * Redistribution and use in source and binary forms, with or without
17 < * modification, are permitted provided that the following conditions
18 < * are met:
19 < *
20 < * 1. Redistributions of source code must retain the above copyright
21 < *         notice, this list of conditions and the following disclaimer.
22 < *
23 < * 2. Redistributions in binary form must reproduce the above copyright
24 < *       notice, this list of conditions and the following disclaimer in
25 < *       the documentation and/or other materials provided with the
26 < *       distribution.
27 < *
28 < * 3. The end-user documentation included with the redistribution,
29 < *           if any, must include the following acknowledgment:
30 < *             "This product includes Radiance software
31 < *                 (http://radsite.lbl.gov/)
32 < *                 developed by the Lawrence Berkeley National Laboratory
33 < *               (http://www.lbl.gov/)."
34 < *       Alternately, this acknowledgment may appear in the software itself,
35 < *       if and wherever such third-party acknowledgments normally appear.
36 < *
37 < * 4. The names "Radiance," "Lawrence Berkeley National Laboratory"
38 < *       and "The Regents of the University of California" must
39 < *       not be used to endorse or promote products derived from this
40 < *       software without prior written permission. For written
41 < *       permission, please contact [email protected].
42 < *
43 < * 5. Products derived from this software may not be called "Radiance",
44 < *       nor may "Radiance" appear in their name, without prior written
45 < *       permission of Lawrence Berkeley National Laboratory.
46 < *
47 < * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
48 < * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49 < * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
50 < * DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
51 < * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 < * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 < * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 < * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 < * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 < * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 < * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 < * SUCH DAMAGE.
59 < * ====================================================================
60 < *
61 < * This software consists of voluntary contributions made by many
62 < * individuals on behalf of Lawrence Berkeley National Laboratory.   For more
63 < * information on Lawrence Berkeley National Laboratory, please see
64 < * <http://www.lbl.gov/>.
65 < */
10 > #include "copyright.h"
11  
12   /*
13   *  These calls are designed similarly to the ones in raycalls.c,
14   *  but allow for multiple rendering processes on the same host
15   *  machine.  There is no sense in specifying more child processes
16 < *  than you have processors, but one child may help by allowing
16 > *  than you have processor cores, but one child may help by allowing
17   *  asynchronous ray computation in an interactive program, and
18   *  will protect the caller from fatal rendering errors.
19   *
20 < *  You should first read and undrstand the header in raycalls.c,
20 > *  You should first read and understand the header in raycalls.c,
21   *  as some things are explained there that are not repated here.
22   *
23   *  The first step is opening one or more rendering processes
24   *  with a call to ray_pinit(oct, nproc).  Before calling fork(),
25   *  ray_pinit() loads the octree and data structures into the
26 < *  caller's memory.  This permits all sorts of queries that
27 < *  wouldn't be possible otherwise, without causing any real
26 > *  caller's memory, and ray_popen() synchronizes the ambient
27 > *  file, if any.  Shared memory permits all sorts of queries
28 > *  that wouldn't be possible otherwise without causing any real
29   *  memory overhead, since all the static data are shared
30 < *  between processes.  Rays are then traced using a simple
30 > *  between processes.  Rays are traced using a simple
31   *  queuing mechanism, explained below.
32   *
33 < *  The ray queue holds as many rays as there are rendering
34 < *  processes.  Rays are queued and returned by a single
33 > *  The ray queue buffers RAYQLEN rays before sending to
34 > *  children, each of which may internally buffer RAYQLEN rays
35 > *  during evaluation.  Rays are not returned in the order
36 > *  they are sent when multiple processes are open.
37 > *
38 > *  Rays are queued and returned by a single
39   *  ray_pqueue() call.  A ray_pqueue() return
40   *  value of 0 indicates that no rays are ready
41   *  and the queue is not yet full.  A return value of 1
# Line 98 | Line 48 | static const char      RCSid[] = "$Id$";
48   *      myRay.rorg = ( ray origin point )
49   *      myRay.rdir = ( normalized ray direction )
50   *      myRay.rmax = ( maximum length, or zero for no limit )
51 < *      rayorigin(&myRay, NULL, PRIMARY, 1.0);
51 > *      rayorigin(&myRay, PRIMARY, NULL, NULL);
52   *      myRay.rno = ( my personal ray identifier )
53   *      if (ray_pqueue(&myRay) == 1)
54   *              { do something with results }
# Line 106 | Line 56 | static const char      RCSid[] = "$Id$";
56   *  Note the differences between this and the simpler ray_trace()
57   *  call.  In particular, the call may or may not return a value
58   *  in the passed ray structure.  Also, you need to call rayorigin()
59 < *  yourself, which is normally for you by ray_trace().  The
60 < *  great thing is that ray_pqueue() will trace rays faster in
59 > *  yourself, which is normally called for you by ray_trace().  The
60 > *  benefit is that ray_pqueue() will trace rays faster in
61   *  proportion to the number of CPUs you have available on your
62   *  system.  If the ray queue is full before the call, ray_pqueue()
63   *  will block until a result is ready so it can queue this one.
64 < *  The global int ray_idle indicates the number of currently idle
64 > *  The global int ray_pnidle indicates the number of currently idle
65   *  children.  If you want to check for completed rays without blocking,
66   *  or get the results from rays that have been queued without
67   *  queuing any new ones, the ray_presult() call is for you:
# Line 125 | Line 75 | static const char      RCSid[] = "$Id$";
75   *  until a value is available, returning 0 only if the
76   *  queue is completely empty.  A negative return value
77   *  indicates that a rendering process died.  If this
78 < *  happens, ray_close(0) is automatically called to close
79 < *  all child processes, and ray_nprocs is set to zero.
78 > *  happens, ray_pclose(0) is automatically called to close
79 > *  all child processes, and ray_pnprocs is set to zero.
80   *
81   *  If you just want to fill the ray queue without checking for
82 < *  results, check ray_idle and call ray_psend():
82 > *  results, check ray_pnidle and call ray_psend():
83   *
84 < *      while (ray_idle) {
84 > *      while (ray_pnidle) {
85   *              ( set up ray )
86   *              ray_psend(&myRay);
87   *      }
88   *
89 < *  The ray_presult() and/or ray_pqueue() functions may then be
90 < *  called to read back the results.
89 > *  Note that it is a fatal error to call ra_psend() when
90 > *  ray_pnidle is zero.  The ray_presult() and/or ray_pqueue()
91 > *  functions may be called subsequently to read back the results.
92   *
93   *  When you are done, you may call ray_pdone(1) to close
94   *  all child processes and clean up memory used by Radiance.
95   *  Any queued ray calculations will be awaited and discarded.
96   *  As with ray_done(), ray_pdone(0) hangs onto data files
97   *  and fonts that are likely to be used in subsequent renderings.
98 < *  Whether you want to bother cleaning up memory or not, you
99 < *  should at least call ray_pclose(0) to clean the child processes.
98 > *  Whether you need to clean up memory or not, you should
99 > *  at least call ray_pclose(0) to await the child processes.
100   *
101   *  Warning:  You cannot affect any of the rendering processes
102   *  by changing global parameter values onece ray_pinit() has
# Line 154 | Line 105 | static const char      RCSid[] = "$Id$";
105   *  If you just want to reap children so that you can alter the
106   *  rendering parameters without reloading the scene, use the
107   *  ray_pclose(0) and ray_popen(nproc) calls to close
108 < *  then restart the child processes.
108 > *  then restart the child processes after the changes are made.
109   *
110   *  Note:  These routines are written to coordinate with the
111   *  definitions in raycalls.c, and in fact depend on them.
112   *  If you want to trace a ray and get a result synchronously,
113   *  use the ray_trace() call to compute it in the parent process.
114 + *  This will not interfere with any subprocess calculations,
115 + *  but beware that a fatal error may end with a call to quit().
116   *
117   *  Note:  One of the advantages of using separate processes
118   *  is that it gives the calling program some immunity from
119   *  fatal rendering errors.  As discussed in raycalls.c,
120   *  Radiance tends to throw up its hands and exit at the
121   *  first sign of trouble, calling quit() to return control
122 < *  to the system.  Although you can avoid exit() with
122 > *  to the top level.  Although you can avoid exit() with
123   *  your own longjmp() in quit(), the cleanup afterwards
124   *  is always suspect.  Through the use of subprocesses,
125   *  we avoid this pitfall by closing the processes and
126   *  returning a negative value from ray_pqueue() or
127   *  ray_presult().  If you get a negative value from either
128   *  of these calls, you can assume that the processes have
129 < *  been cleaned up with a call to ray_close(), though you
129 > *  been cleaned up with a call to ray_pclose(), though you
130   *  will have to call ray_pdone() yourself if you want to
131 < *  free memory.  Obviously, you cannot continue rendering,
132 < *  but otherwise your process should not be compromised.
131 > *  free memory.  Obviously, you cannot continue rendering
132 > *  without risking further errors, but otherwise your
133 > *  process should not be compromised.
134   */
135  
136 + #include  "rtprocess.h"
137   #include  "ray.h"
138 <
138 > #include  "ambient.h"
139 > #include  <sys/types.h>
140 > #include  <sys/wait.h>
141   #include  "selcall.h"
142  
143   #ifndef RAYQLEN
144 < #define RAYQLEN         16              /* # rays to send at once */
144 > #define RAYQLEN         12              /* # rays to send at once */
145   #endif
146  
147   #ifndef MAX_RPROCS
# Line 197 | Line 154 | static const char      RCSid[] = "$Id$";
154  
155   extern char     *shm_boundary;          /* boundary of shared memory */
156  
157 < int             ray_nprocs = 0;         /* number of child processes */
158 < int             ray_idle = 0;           /* number of idle children */
157 > int             ray_pfifo = 0;          /* maintain ray call order? */
158 > int             ray_pnprocs = 0;        /* number of child processes */
159 > int             ray_pnidle = 0;         /* number of idle children */
160  
161   static struct child_proc {
162          int     pid;                            /* child process id */
163          int     fd_send;                        /* write to child here */
164          int     fd_recv;                        /* read from child here */
165          int     npending;                       /* # rays in process */
166 <        unsigned long  rno[RAYQLEN];            /* working on these rays */
166 >        RNUMBER rno[RAYQLEN];                   /* working on these rays */
167   } r_proc[MAX_NPROCS];                   /* our child processes */
168  
169   static RAY      r_queue[2*RAYQLEN];     /* ray i/o buffer */
# Line 215 | Line 173 | static int     r_recv_next;            /* next receive ray placement
173  
174   #define sendq_full()    (r_send_next >= RAYQLEN)
175  
176 + static int ray_pflush(void);
177 + static void ray_pchild(int fd_in, int fd_out);
178  
179 < void
180 < ray_pinit(otnm, nproc)          /* initialize ray-tracing processes */
181 < char    *otnm;
182 < int     nproc;
179 >
180 > extern void
181 > ray_pinit(              /* initialize ray-tracing processes */
182 >        char    *otnm,
183 >        int     nproc
184 > )
185   {
186          if (nobjects > 0)               /* close old calculation */
187                  ray_pdone(0);
188  
189          ray_init(otnm);                 /* load the shared scene */
190  
229        preload_objs();                 /* preload auxiliary data */
230
231                                        /* set shared memory boundary */
232        shm_boundary = (char *)malloc(16);
233        strcpy(shm_boundary, "SHM_BOUNDARY");
234
191          r_send_next = 0;                /* set up queue */
192          r_recv_first = r_recv_next = RAYQLEN;
193  
# Line 240 | Line 196 | int    nproc;
196  
197  
198   static int
199 < ray_pflush()                    /* send queued rays to idle children */
199 > ray_pflush(void)                        /* send queued rays to idle children */
200   {
201          int     nc, n, nw, i, sfirst;
202  
203 <        if ((ray_idle <= 0 | r_send_next <= 0))
203 >        if ((ray_pnidle <= 0) | (r_send_next <= 0))
204                  return(0);              /* nothing we can send */
205          
206          sfirst = 0;                     /* divvy up labor */
207 <        nc = ray_idle;
208 <        for (i = ray_nprocs; nc && i--; ) {
207 >        nc = ray_pnidle;
208 >        for (i = ray_pnprocs; nc && i--; ) {
209                  if (r_proc[i].npending > 0)
210                          continue;       /* child looks busy */
211                  n = (r_send_next - sfirst)/nc--;
# Line 265 | Line 221 | ray_pflush()                   /* send queued rays to idle children */
221                  while (n--)             /* record ray IDs */
222                          r_proc[i].rno[n] = r_queue[sfirst+n].rno;
223                  sfirst += r_proc[i].npending;
224 <                ray_idle--;             /* now she's busy */
224 >                ray_pnidle--;           /* now she's busy */
225          }
226          if (sfirst != r_send_next)
227                  error(CONSISTENCY, "code screwup in ray_pflush");
# Line 274 | Line 230 | ray_pflush()                   /* send queued rays to idle children */
230   }
231  
232  
233 < void
234 < ray_psend(r)                    /* add a ray to our send queue */
235 < RAY     *r;
233 > extern void
234 > ray_psend(                      /* add a ray to our send queue */
235 >        RAY     *r
236 > )
237   {
238          if (r == NULL)
239                  return;
# Line 284 | Line 241 | RAY    *r;
241          if (sendq_full() && ray_pflush() <= 0)
242                  error(INTERNAL, "ray_pflush failed in ray_psend");
243  
244 <        copystruct(&r_queue[r_send_next], r);
288 <        r_send_next++;
244 >        r_queue[r_send_next++] = *r;
245   }
246  
247  
248 < int
249 < ray_pqueue(r)                   /* queue a ray for computation */
250 < RAY     *r;
248 > extern int
249 > ray_pqueue(                     /* queue a ray for computation */
250 >        RAY     *r
251 > )
252   {
253          if (r == NULL)
254                  return(0);
255                                          /* check for full send queue */
256          if (sendq_full()) {
257 <                RAY     mySend;
301 <                int     rval;
302 <                copystruct(&mySend, r);
257 >                RAY     mySend = *r;
258                                          /* wait for a result */
259 <                rval = ray_presult(r, 0);
259 >                if (ray_presult(r, 0) <= 0)
260 >                        return(-1);
261                                          /* put new ray in queue */
262 <                copystruct(&r_queue[r_send_next], &mySend);
263 <                r_send_next++;
264 <                return(rval);           /* done */
262 >                r_queue[r_send_next++] = mySend;
263 >                                /* XXX r_send_next may now be > RAYQLEN */
264 >                return(1);
265          }
266 <                                        /* add ray to send queue */
267 <        copystruct(&r_queue[r_send_next], r);
312 <        r_send_next++;
266 >                                        /* else add ray to send queue */
267 >        r_queue[r_send_next++] = *r;
268                                          /* check for returned ray... */
269          if (r_recv_first >= r_recv_next)
270                  return(0);
271                                          /* ...one is sitting in queue */
272 <        copystruct(r, &r_queue[r_recv_first]);
318 <        r_recv_first++;
272 >        *r = r_queue[r_recv_first++];
273          return(1);
274   }
275  
276  
277 < int
278 < ray_presult(r, poll)            /* check for a completed ray */
279 < RAY     *r;
280 < int     poll;
277 > extern int
278 > ray_presult(            /* check for a completed ray */
279 >        RAY     *r,
280 >        int     poll
281 > )
282   {
283          static struct timeval   tpoll;  /* zero timeval struct */
284          static fd_set   readset, errset;
# Line 334 | Line 289 | int    poll;
289                  return(0);
290                                          /* check queued results first */
291          if (r_recv_first < r_recv_next) {
292 <                copystruct(r, &r_queue[r_recv_first]);
338 <                r_recv_first++;
292 >                *r = r_queue[r_recv_first++];
293                  return(1);
294          }
295 <        n = ray_nprocs - ray_idle;      /* pending before flush? */
295 >        n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
296  
297          if (ray_pflush() < 0)           /* send new rays to process */
298                  return(-1);
# Line 346 | Line 300 | int    poll;
300          r_recv_first = r_recv_next = RAYQLEN;
301  
302          if (!poll)                      /* count newly sent unless polling */
303 <                n = ray_nprocs - ray_idle;
303 >                n = ray_pnprocs - ray_pnidle;
304          if (n <= 0)                     /* return if nothing to await */
305                  return(0);
306 +        if (!poll && ray_pnprocs == 1)  /* one process -> skip select() */
307 +                FD_SET(r_proc[0].fd_recv, &readset);
308 +
309   getready:                               /* any children waiting for us? */
310 <        for (pn = ray_nprocs; pn--; )
310 >        for (pn = ray_pnprocs; pn--; )
311                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
312                                  FD_ISSET(r_proc[pn].fd_recv, &errset))
313                          break;
314                                          /* call select if we must */
315          if (pn < 0) {
316                  FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
317 <                for (pn = ray_nprocs; pn--; ) {
317 >                for (pn = ray_pnprocs; pn--; ) {
318                          if (r_proc[pn].npending > 0)
319                                  FD_SET(r_proc[pn].fd_recv, &readset);
320                          FD_SET(r_proc[pn].fd_recv, &errset);
# Line 393 | Line 350 | getready:                              /* any children waiting for us? */
350          if (n <= 0)
351                  FD_CLR(r_proc[pn].fd_recv, &errset);
352          r_proc[pn].npending = 0;
353 <        ray_idle++;
353 >        ray_pnidle++;
354                                          /* check for rendering errors */
355          if (!ok) {
356                  ray_pclose(0);          /* process died -- clean up */
# Line 409 | Line 366 | getready:                              /* any children waiting for us? */
366                  rp->slights = NULL;
367          }
368                                          /* return first ray received */
369 <        copystruct(r, &r_queue[r_recv_first]);
413 <        r_recv_first++;
369 >        *r = r_queue[r_recv_first++];
370          return(1);
371   }
372  
373  
374 < void
375 < ray_pdone(freall)               /* reap children and free data */
376 < int     freall;
374 > extern void
375 > ray_pdone(              /* reap children and free data */
376 >        int     freall
377 > )
378   {
379          ray_pclose(0);                  /* close child processes */
380  
# Line 430 | Line 387 | int    freall;
387  
388  
389   static void
390 < ray_pchild(fd_in, fd_out)       /* process rays (never returns) */
391 < int     fd_in;
392 < int     fd_out;
390 > ray_pchild(     /* process rays (never returns) */
391 >        int     fd_in,
392 >        int     fd_out
393 > )
394   {
395          int     n;
396          register int    i;
397 +                                        /* flag child process for quit() */
398 +        ray_pnprocs = -1;
399                                          /* read each ray request set */
400          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
401                  int     n2;
402 <                if (n % sizeof(RAY))
402 >                if (n < sizeof(RAY))
403                          break;
444                n /= sizeof(RAY);
404                                          /* get smuggled set length */
405 <                n2 = r_queue[0].crtype - n;
405 >                n2 = sizeof(RAY)*r_queue[0].crtype - n;
406                  if (n2 < 0)
407                          error(INTERNAL, "buffer over-read in ray_pchild");
408                  if (n2 > 0) {           /* read the rest of the set */
409 <                        i = readbuf(fd_in, (char *)(r_queue+n),
410 <                                        sizeof(RAY)*n2);
452 <                        if (i != sizeof(RAY)*n2)
409 >                        i = readbuf(fd_in, (char *)r_queue + n, n2);
410 >                        if (i != n2)
411                                  break;
412                          n += n2;
413                  }
414 +                n /= sizeof(RAY);
415                                          /* evaluate rays */
416                  for (i = 0; i < n; i++) {
417                          r_queue[i].crtype = r_queue[i].rtype;
418                          r_queue[i].parent = NULL;
419                          r_queue[i].clipset = NULL;
420                          r_queue[i].slights = NULL;
421 <                        r_queue[i].revf = raytrace;
421 >                        r_queue[i].rlvl = 0;
422                          samplendx++;
423                          rayclear(&r_queue[i]);
424                          rayvalue(&r_queue[i]);
# Line 476 | Line 435 | int    fd_out;
435   }
436  
437  
438 < void
439 < ray_popen(nadd)                 /* open the specified # processes */
440 < int     nadd;
438 > extern void
439 > ray_popen(                      /* open the specified # processes */
440 >        int     nadd
441 > )
442   {
443                                          /* check if our table has room */
444 <        if (ray_nprocs + nadd > MAX_NPROCS)
445 <                nadd = MAX_NPROCS - ray_nprocs;
444 >        if (ray_pnprocs + nadd > MAX_NPROCS)
445 >                nadd = MAX_NPROCS - ray_pnprocs;
446          if (nadd <= 0)
447                  return;
448 <        fflush(stderr);                 /* clear pending output */
449 <        fflush(stdout);
448 >        ambsync();                      /* load any new ambient values */
449 >        if (shm_boundary == NULL) {     /* first child process? */
450 >                preload_objs();         /* preload auxiliary data */
451 >                                        /* set shared memory boundary */
452 >                shm_boundary = (char *)malloc(16);
453 >                strcpy(shm_boundary, "SHM_BOUNDARY");
454 >        }
455 >        fflush(NULL);                   /* clear pending output */
456          while (nadd--) {                /* fork each new process */
457                  int     p0[2], p1[2];
458                  if (pipe(p0) < 0 || pipe(p1) < 0)
459                          error(SYSTEM, "cannot create pipe");
460 <                if ((r_proc[ray_nprocs].pid = fork()) == 0) {
460 >                if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
461                          int     pn;     /* close others' descriptors */
462 <                        for (pn = ray_nprocs; pn--; ) {
462 >                        for (pn = ray_pnprocs; pn--; ) {
463                                  close(r_proc[pn].fd_send);
464                                  close(r_proc[pn].fd_recv);
465                          }
# Line 501 | Line 467 | int    nadd;
467                                          /* following call never returns */
468                          ray_pchild(p1[0], p0[1]);
469                  }
470 <                if (r_proc[ray_nprocs].pid < 0)
470 >                if (r_proc[ray_pnprocs].pid < 0)
471                          error(SYSTEM, "cannot fork child process");
472                  close(p1[0]); close(p0[1]);
473 <                r_proc[ray_nprocs].fd_send = p1[1];
474 <                r_proc[ray_nprocs].fd_recv = p0[0];
475 <                r_proc[ray_nprocs].npending = 0;
476 <                ray_nprocs++;
477 <                ray_idle++;
473 >                /*
474 >                 * Close write stream on exec to avoid multiprocessing deadlock.
475 >                 * No use in read stream without it, so set flag there as well.
476 >                 */
477 >                fcntl(p1[1], F_SETFD, FD_CLOEXEC);
478 >                fcntl(p0[0], F_SETFD, FD_CLOEXEC);
479 >                r_proc[ray_pnprocs].fd_send = p1[1];
480 >                r_proc[ray_pnprocs].fd_recv = p0[0];
481 >                r_proc[ray_pnprocs].npending = 0;
482 >                ray_pnprocs++;
483 >                ray_pnidle++;
484          }
485   }
486  
487  
488 < void
489 < ray_pclose(nsub)                /* close one or more child processes */
490 < int     nsub;
488 > extern void
489 > ray_pclose(             /* close one or more child processes */
490 >        int     nsub
491 > )
492   {
493          static int      inclose = 0;
494          RAY     res;
# Line 524 | Line 497 | int    nsub;
497                  return;
498          inclose++;
499                                          /* check argument */
500 <        if ((nsub <= 0 | nsub > ray_nprocs))
501 <                nsub = ray_nprocs;
500 >        if ((nsub <= 0) | (nsub > ray_pnprocs))
501 >                nsub = ray_pnprocs;
502                                          /* clear our ray queue */
503          while (ray_presult(&res,0) > 0)
504                  ;
505                                          /* clean up children */
506          while (nsub--) {
507                  int     status;
508 <                ray_nprocs--;
509 <                close(r_proc[ray_nprocs].fd_recv);
510 <                close(r_proc[ray_nprocs].fd_send);
511 <                while (wait(&status) != r_proc[ray_nprocs].pid)
512 <                        ;
508 >                ray_pnprocs--;
509 >                close(r_proc[ray_pnprocs].fd_recv);
510 >                close(r_proc[ray_pnprocs].fd_send);
511 >                if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
512 >                        status = 127<<8;
513                  if (status) {
514                          sprintf(errmsg,
515                                  "rendering process %d exited with code %d",
516 <                                        r_proc[ray_nprocs].pid, status>>8);
516 >                                        r_proc[ray_pnprocs].pid, status>>8);
517                          error(WARNING, errmsg);
518                  }
519 <                ray_idle--;
519 >                ray_pnidle--;
520          }
521          inclose--;
522   }
# Line 553 | Line 526 | void
526   quit(ec)                        /* make sure exit is called */
527   int     ec;
528   {
529 +        if (ray_pnprocs > 0)    /* close children if any */
530 +                ray_pclose(0);          
531          exit(ec);
532   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines