ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.20 by greg, Tue Dec 2 23:28:34 2008 UTC vs.
Revision 2.21 by greg, Sat Dec 12 00:03:42 2009 UTC

# Line 13 | Line 13 | static const char      RCSid[] = "$Id$";
13   *  These calls are designed similarly to the ones in raycalls.c,
14   *  but allow for multiple rendering processes on the same host
15   *  machine.  There is no sense in specifying more child processes
16 < *  than you have processors, but one child may help by allowing
16 > *  than you have processor cores, but one child may help by allowing
17   *  asynchronous ray computation in an interactive program, and
18   *  will protect the caller from fatal rendering errors.
19   *
20 < *  You should first read and undrstand the header in raycalls.c,
20 > *  You should first read and understand the header in raycalls.c,
21   *  as some things are explained there that are not repated here.
22   *
23   *  The first step is opening one or more rendering processes
# Line 25 | Line 25 | static const char      RCSid[] = "$Id$";
25   *  ray_pinit() loads the octree and data structures into the
26   *  caller's memory, and ray_popen() synchronizes the ambient
27   *  file, if any.  Shared memory permits all sorts of queries
28 < *  that wouldn't be possible otherwise, without causing any real
28 > *  that wouldn't be possible otherwise without causing any real
29   *  memory overhead, since all the static data are shared
30 < *  between processes.  Rays are then traced using a simple
30 > *  between processes.  Rays are traced using a simple
31   *  queuing mechanism, explained below.
32   *
33   *  The ray queue buffers RAYQLEN rays before sending to
34 < *  children, each of which may internally buffer RAYQLEN rays.
34 > *  children, each of which may internally buffer RAYQLEN rays
35 > *  during evaluation.  Rays are not returned in the order
36 > *  they are sent when multiple processes are open.
37   *
38   *  Rays are queued and returned by a single
39   *  ray_pqueue() call.  A ray_pqueue() return
# Line 73 | Line 75 | static const char      RCSid[] = "$Id$";
75   *  until a value is available, returning 0 only if the
76   *  queue is completely empty.  A negative return value
77   *  indicates that a rendering process died.  If this
78 < *  happens, ray_close(0) is automatically called to close
78 > *  happens, ray_pclose(0) is automatically called to close
79   *  all child processes, and ray_pnprocs is set to zero.
80   *
81   *  If you just want to fill the ray queue without checking for
# Line 93 | Line 95 | static const char      RCSid[] = "$Id$";
95   *  Any queued ray calculations will be awaited and discarded.
96   *  As with ray_done(), ray_pdone(0) hangs onto data files
97   *  and fonts that are likely to be used in subsequent renderings.
98 < *  Whether you want to bother cleaning up memory or not, you
99 < *  should at least call ray_pclose(0) to clean the child processes.
98 > *  Whether you need to clean up memory or not, you should
99 > *  at least call ray_pclose(0) to await the child processes.
100   *
101   *  Warning:  You cannot affect any of the rendering processes
102   *  by changing global parameter values onece ray_pinit() has
# Line 124 | Line 126 | static const char      RCSid[] = "$Id$";
126   *  returning a negative value from ray_pqueue() or
127   *  ray_presult().  If you get a negative value from either
128   *  of these calls, you can assume that the processes have
129 < *  been cleaned up with a call to ray_close(), though you
129 > *  been cleaned up with a call to ray_pclose(), though you
130   *  will have to call ray_pdone() yourself if you want to
131   *  free memory.  Obviously, you cannot continue rendering
132   *  without risking further errors, but otherwise your
# Line 152 | Line 154 | static const char      RCSid[] = "$Id$";
154  
155   extern char     *shm_boundary;          /* boundary of shared memory */
156  
157 + int             ray_pfifo = 0;          /* maintain ray call order? */
158   int             ray_pnprocs = 0;        /* number of child processes */
159   int             ray_pnidle = 0;         /* number of idle children */
160  
# Line 160 | Line 163 | static struct child_proc {
163          int     fd_send;                        /* write to child here */
164          int     fd_recv;                        /* read from child here */
165          int     npending;                       /* # rays in process */
166 <        unsigned long  rno[RAYQLEN];            /* working on these rays */
166 >        RNUMBER rno[RAYQLEN];                   /* working on these rays */
167   } r_proc[MAX_NPROCS];                   /* our child processes */
168  
169   static RAY      r_queue[2*RAYQLEN];     /* ray i/o buffer */
# Line 415 | Line 418 | ray_pchild(    /* process rays (never returns) */
418                          r_queue[i].parent = NULL;
419                          r_queue[i].clipset = NULL;
420                          r_queue[i].slights = NULL;
421 +                        r_queue[i].rlvl = 0;
422                          samplendx++;
423                          rayclear(&r_queue[i]);
424                          rayvalue(&r_queue[i]);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines