ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.2 by greg, Tue Feb 25 02:47:23 2003 UTC vs.
Revision 2.26 by greg, Wed Dec 16 01:06:50 2009 UTC

# Line 13 | Line 13 | static const char      RCSid[] = "$Id$";
13   *  These calls are designed similarly to the ones in raycalls.c,
14   *  but allow for multiple rendering processes on the same host
15   *  machine.  There is no sense in specifying more child processes
16 < *  than you have processors, but one child may help by allowing
16 > *  than you have processor cores, but one child may help by allowing
17   *  asynchronous ray computation in an interactive program, and
18   *  will protect the caller from fatal rendering errors.
19   *
20 < *  You should first read and undrstand the header in raycalls.c,
20 > *  You should first read and understand the header in raycalls.c,
21   *  as some things are explained there that are not repated here.
22   *
23   *  The first step is opening one or more rendering processes
24   *  with a call to ray_pinit(oct, nproc).  Before calling fork(),
25   *  ray_pinit() loads the octree and data structures into the
26 < *  caller's memory.  This permits all sorts of queries that
27 < *  wouldn't be possible otherwise, without causing any real
26 > *  caller's memory, and ray_popen() synchronizes the ambient
27 > *  file, if any.  Shared memory permits all sorts of queries
28 > *  that wouldn't be possible otherwise without causing any real
29   *  memory overhead, since all the static data are shared
30 < *  between processes.  Rays are then traced using a simple
30 > *  between processes.  Rays are traced using a simple
31   *  queuing mechanism, explained below.
32   *
33 < *  The ray queue holds as many rays as there are rendering
34 < *  processes.  Rays are queued and returned by a single
33 > *  The ray queue buffers RAYQLEN rays before sending to
34 > *  children, each of which may internally buffer RAYQLEN rays
35 > *  during evaluation.  Rays are not returned in the order
36 > *  they are sent when multiple processes are open.
37 > *
38 > *  Rays are queued and returned by a single
39   *  ray_pqueue() call.  A ray_pqueue() return
40   *  value of 0 indicates that no rays are ready
41   *  and the queue is not yet full.  A return value of 1
# Line 43 | Line 48 | static const char      RCSid[] = "$Id$";
48   *      myRay.rorg = ( ray origin point )
49   *      myRay.rdir = ( normalized ray direction )
50   *      myRay.rmax = ( maximum length, or zero for no limit )
51 < *      rayorigin(&myRay, NULL, PRIMARY, 1.0);
51 > *      rayorigin(&myRay, PRIMARY, NULL, NULL);
52   *      myRay.rno = ( my personal ray identifier )
53   *      if (ray_pqueue(&myRay) == 1)
54   *              { do something with results }
# Line 51 | Line 56 | static const char      RCSid[] = "$Id$";
56   *  Note the differences between this and the simpler ray_trace()
57   *  call.  In particular, the call may or may not return a value
58   *  in the passed ray structure.  Also, you need to call rayorigin()
59 < *  yourself, which is normally for you by ray_trace().  The
60 < *  great thing is that ray_pqueue() will trace rays faster in
59 > *  yourself, which is normally called for you by ray_trace().  The
60 > *  benefit is that ray_pqueue() will trace rays faster in
61   *  proportion to the number of CPUs you have available on your
62   *  system.  If the ray queue is full before the call, ray_pqueue()
63   *  will block until a result is ready so it can queue this one.
64 < *  The global int ray_idle indicates the number of currently idle
64 > *  The global int ray_pnidle indicates the number of currently idle
65   *  children.  If you want to check for completed rays without blocking,
66   *  or get the results from rays that have been queued without
67   *  queuing any new ones, the ray_presult() call is for you:
# Line 68 | Line 73 | static const char      RCSid[] = "$Id$";
73   *  results aren't ready, but will immediately return 0.
74   *  If the second argument is 0, the call will block
75   *  until a value is available, returning 0 only if the
76 < *  queue is completely empty.  A negative return value
76 > *  queue is completely empty.  Setting the second argument
77 > *  to -1 returns 0 unless a ray is ready in the queue and
78 > *  no system calls are needed.  A negative return value
79   *  indicates that a rendering process died.  If this
80 < *  happens, ray_close(0) is automatically called to close
81 < *  all child processes, and ray_nprocs is set to zero.
80 > *  happens, ray_pclose(0) is automatically called to close
81 > *  all child processes, and ray_pnprocs is set to zero.
82   *
83   *  If you just want to fill the ray queue without checking for
84 < *  results, check ray_idle and call ray_psend():
84 > *  results, check ray_pnidle and call ray_psend():
85   *
86 < *      while (ray_idle) {
86 > *      while (ray_pnidle) {
87   *              ( set up ray )
88   *              ray_psend(&myRay);
89   *      }
90   *
91 < *  The ray_presult() and/or ray_pqueue() functions may then be
92 < *  called to read back the results.
91 > *  Note that it is a mistake to call ra_psend() when
92 > *  ray_pnidle is zero, and nothing will be sent in
93 > *  this case.  Otherwise, the ray_presult() and/or ray_pqueue()
94 > *  functions may be called subsequently to read back the results
95 > *  of rays queued by ray_psend().
96   *
97   *  When you are done, you may call ray_pdone(1) to close
98   *  all child processes and clean up memory used by Radiance.
99   *  Any queued ray calculations will be awaited and discarded.
100   *  As with ray_done(), ray_pdone(0) hangs onto data files
101   *  and fonts that are likely to be used in subsequent renderings.
102 < *  Whether you want to bother cleaning up memory or not, you
103 < *  should at least call ray_pclose(0) to clean the child processes.
102 > *  Whether you need to clean up memory or not, you should
103 > *  at least call ray_pclose(0) to await the child processes.
104 > *  The caller should define a quit() function that calls
105 > *  ray_pclose(0) if ray_pnprocs > 0.
106   *
107   *  Warning:  You cannot affect any of the rendering processes
108   *  by changing global parameter values onece ray_pinit() has
# Line 99 | Line 111 | static const char      RCSid[] = "$Id$";
111   *  If you just want to reap children so that you can alter the
112   *  rendering parameters without reloading the scene, use the
113   *  ray_pclose(0) and ray_popen(nproc) calls to close
114 < *  then restart the child processes.
114 > *  then restart the child processes after the changes are made.
115   *
116   *  Note:  These routines are written to coordinate with the
117   *  definitions in raycalls.c, and in fact depend on them.
118   *  If you want to trace a ray and get a result synchronously,
119   *  use the ray_trace() call to compute it in the parent process.
120 + *  This will not interfere with any subprocess calculations,
121 + *  but beware that a fatal error may end with a call to quit().
122   *
123   *  Note:  One of the advantages of using separate processes
124   *  is that it gives the calling program some immunity from
125   *  fatal rendering errors.  As discussed in raycalls.c,
126   *  Radiance tends to throw up its hands and exit at the
127   *  first sign of trouble, calling quit() to return control
128 < *  to the system.  Although you can avoid exit() with
128 > *  to the top level.  Although you can avoid exit() with
129   *  your own longjmp() in quit(), the cleanup afterwards
130   *  is always suspect.  Through the use of subprocesses,
131   *  we avoid this pitfall by closing the processes and
132   *  returning a negative value from ray_pqueue() or
133   *  ray_presult().  If you get a negative value from either
134   *  of these calls, you can assume that the processes have
135 < *  been cleaned up with a call to ray_close(), though you
135 > *  been cleaned up with a call to ray_pclose(), though you
136   *  will have to call ray_pdone() yourself if you want to
137 < *  free memory.  Obviously, you cannot continue rendering,
138 < *  but otherwise your process should not be compromised.
137 > *  free memory.  Obviously, you cannot continue rendering
138 > *  without risking further errors, but otherwise your
139 > *  process should not be compromised.
140   */
141  
142 + #include  "rtprocess.h"
143   #include  "ray.h"
144 <
144 > #include  "ambient.h"
145 > #include  <sys/types.h>
146 > #include  <sys/wait.h>
147   #include  "selcall.h"
148  
149   #ifndef RAYQLEN
150 < #define RAYQLEN         16              /* # rays to send at once */
150 > #define RAYQLEN         12              /* # rays to send at once */
151   #endif
152  
153   #ifndef MAX_RPROCS
# Line 142 | Line 160 | static const char      RCSid[] = "$Id$";
160  
161   extern char     *shm_boundary;          /* boundary of shared memory */
162  
163 < int             ray_nprocs = 0;         /* number of child processes */
164 < int             ray_idle = 0;           /* number of idle children */
163 > int             ray_pnprocs = 0;        /* number of child processes */
164 > int             ray_pnidle = 0;         /* number of idle children */
165  
166   static struct child_proc {
167          int     pid;                            /* child process id */
168          int     fd_send;                        /* write to child here */
169          int     fd_recv;                        /* read from child here */
170          int     npending;                       /* # rays in process */
171 <        unsigned long  rno[RAYQLEN];            /* working on these rays */
171 >        RNUMBER rno[RAYQLEN];                   /* working on these rays */
172   } r_proc[MAX_NPROCS];                   /* our child processes */
173  
174   static RAY      r_queue[2*RAYQLEN];     /* ray i/o buffer */
175 < static int      r_send_next;            /* next send ray placement */
176 < static int      r_recv_first;           /* position of first unreported ray */
177 < static int      r_recv_next;            /* next receive ray placement */
175 > static int      r_send_next = 0;        /* next send ray placement */
176 > static int      r_recv_first = RAYQLEN; /* position of first unreported ray */
177 > static int      r_recv_next = RAYQLEN;  /* next received ray placement */
178  
179   #define sendq_full()    (r_send_next >= RAYQLEN)
180  
181 + static int ray_pflush(void);
182 + static void ray_pchild(int fd_in, int fd_out);
183  
184 +
185   void
186 < ray_pinit(otnm, nproc)          /* initialize ray-tracing processes */
187 < char    *otnm;
188 < int     nproc;
186 > ray_pinit(              /* initialize ray-tracing processes */
187 >        char    *otnm,
188 >        int     nproc
189 > )
190   {
191          if (nobjects > 0)               /* close old calculation */
192                  ray_pdone(0);
193  
194          ray_init(otnm);                 /* load the shared scene */
195  
174        preload_objs();                 /* preload auxiliary data */
175
176                                        /* set shared memory boundary */
177        shm_boundary = (char *)malloc(16);
178        strcpy(shm_boundary, "SHM_BOUNDARY");
179
180        r_send_next = 0;                /* set up queue */
181        r_recv_first = r_recv_next = RAYQLEN;
182
196          ray_popen(nproc);               /* fork children */
197   }
198  
199  
200   static int
201 < ray_pflush()                    /* send queued rays to idle children */
201 > ray_pflush(void)                        /* send queued rays to idle children */
202   {
203          int     nc, n, nw, i, sfirst;
204  
205 <        if ((ray_idle <= 0 | r_send_next <= 0))
205 >        if ((ray_pnidle <= 0) | (r_send_next <= 0))
206                  return(0);              /* nothing we can send */
207          
208          sfirst = 0;                     /* divvy up labor */
209 <        nc = ray_idle;
210 <        for (i = ray_nprocs; nc && i--; ) {
209 >        nc = ray_pnidle;
210 >        for (i = ray_pnprocs; nc && i--; ) {
211                  if (r_proc[i].npending > 0)
212                          continue;       /* child looks busy */
213                  n = (r_send_next - sfirst)/nc--;
# Line 210 | Line 223 | ray_pflush()                   /* send queued rays to idle children */
223                  while (n--)             /* record ray IDs */
224                          r_proc[i].rno[n] = r_queue[sfirst+n].rno;
225                  sfirst += r_proc[i].npending;
226 <                ray_idle--;             /* now she's busy */
226 >                ray_pnidle--;           /* now she's busy */
227          }
228          if (sfirst != r_send_next)
229 <                error(CONSISTENCY, "code screwup in ray_pflush");
229 >                error(CONSISTENCY, "code screwup in ray_pflush()");
230          r_send_next = 0;
231          return(sfirst);                 /* return total # sent */
232   }
233  
234  
235 < void
236 < ray_psend(r)                    /* add a ray to our send queue */
237 < RAY     *r;
235 > int
236 > ray_psend(                      /* add a ray to our send queue */
237 >        RAY     *r
238 > )
239   {
240 <        if (r == NULL)
241 <                return;
240 >        int     rv;
241 >
242 >        if ((r == NULL) | (ray_pnidle <= 0))
243 >                return(0);
244                                          /* flush output if necessary */
245 <        if (sendq_full() && ray_pflush() <= 0)
246 <                error(INTERNAL, "ray_pflush failed in ray_psend");
245 >        if (sendq_full() && (rv = ray_pflush()) <= 0)
246 >                return(rv);
247  
248 <        copystruct(&r_queue[r_send_next], r);
249 <        r_send_next++;
248 >        r_queue[r_send_next++] = *r;
249 >        return(1);
250   }
251  
252  
253   int
254 < ray_pqueue(r)                   /* queue a ray for computation */
255 < RAY     *r;
254 > ray_pqueue(                     /* queue a ray for computation */
255 >        RAY     *r
256 > )
257   {
258          if (r == NULL)
259                  return(0);
260                                          /* check for full send queue */
261          if (sendq_full()) {
262 <                RAY     mySend;
246 <                int     rval;
247 <                copystruct(&mySend, r);
262 >                RAY     mySend = *r;
263                                          /* wait for a result */
264 <                rval = ray_presult(r, 0);
264 >                if (ray_presult(r, 0) <= 0)
265 >                        return(-1);
266                                          /* put new ray in queue */
267 <                copystruct(&r_queue[r_send_next], &mySend);
268 <                r_send_next++;
269 <                return(rval);           /* done */
267 >                r_queue[r_send_next++] = mySend;
268 >
269 >                return(1);
270          }
271 <                                        /* add ray to send queue */
272 <        copystruct(&r_queue[r_send_next], r);
257 <        r_send_next++;
271 >                                        /* else add ray to send queue */
272 >        r_queue[r_send_next++] = *r;
273                                          /* check for returned ray... */
274          if (r_recv_first >= r_recv_next)
275                  return(0);
276                                          /* ...one is sitting in queue */
277 <        copystruct(r, &r_queue[r_recv_first]);
263 <        r_recv_first++;
277 >        *r = r_queue[r_recv_first++];
278          return(1);
279   }
280  
281  
282   int
283 < ray_presult(r, poll)            /* check for a completed ray */
284 < RAY     *r;
285 < int     poll;
283 > ray_presult(            /* check for a completed ray */
284 >        RAY     *r,
285 >        int     poll
286 > )
287   {
288          static struct timeval   tpoll;  /* zero timeval struct */
289          static fd_set   readset, errset;
# Line 279 | Line 294 | int    poll;
294                  return(0);
295                                          /* check queued results first */
296          if (r_recv_first < r_recv_next) {
297 <                copystruct(r, &r_queue[r_recv_first]);
283 <                r_recv_first++;
297 >                *r = r_queue[r_recv_first++];
298                  return(1);
299          }
300 <        n = ray_nprocs - ray_idle;      /* pending before flush? */
300 >        if (poll < 0)                   /* immediate polling mode? */
301 >                return(0);
302  
303 +        n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
304 +
305          if (ray_pflush() < 0)           /* send new rays to process */
306                  return(-1);
307                                          /* reset receive queue */
308          r_recv_first = r_recv_next = RAYQLEN;
309  
310          if (!poll)                      /* count newly sent unless polling */
311 <                n = ray_nprocs - ray_idle;
311 >                n = ray_pnprocs - ray_pnidle;
312          if (n <= 0)                     /* return if nothing to await */
313                  return(0);
314 +        if (!poll && ray_pnprocs == 1)  /* one process -> skip select() */
315 +                FD_SET(r_proc[0].fd_recv, &readset);
316 +
317   getready:                               /* any children waiting for us? */
318 <        for (pn = ray_nprocs; pn--; )
318 >        for (pn = ray_pnprocs; pn--; )
319                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
320                                  FD_ISSET(r_proc[pn].fd_recv, &errset))
321                          break;
322 <                                        /* call select if we must */
322 >                                        /* call select() if we must */
323          if (pn < 0) {
324                  FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
325 <                for (pn = ray_nprocs; pn--; ) {
325 >                for (pn = ray_pnprocs; pn--; ) {
326                          if (r_proc[pn].npending > 0)
327                                  FD_SET(r_proc[pn].fd_recv, &readset);
328                          FD_SET(r_proc[pn].fd_recv, &errset);
# Line 314 | Line 334 | getready:                              /* any children waiting for us? */
334                                  poll ? &tpoll : (struct timeval *)NULL)) < 0)
335                          if (errno != EINTR) {
336                                  error(WARNING,
337 <                                        "select call failed in ray_presult");
337 >                                        "select call failed in ray_presult()");
338                                  ray_pclose(0);
339                                  return(-1);
340                          }
# Line 338 | Line 358 | getready:                              /* any children waiting for us? */
358          if (n <= 0)
359                  FD_CLR(r_proc[pn].fd_recv, &errset);
360          r_proc[pn].npending = 0;
361 <        ray_idle++;
361 >        ray_pnidle++;
362                                          /* check for rendering errors */
363          if (!ok) {
364                  ray_pclose(0);          /* process died -- clean up */
# Line 354 | Line 374 | getready:                              /* any children waiting for us? */
374                  rp->slights = NULL;
375          }
376                                          /* return first ray received */
377 <        copystruct(r, &r_queue[r_recv_first]);
358 <        r_recv_first++;
377 >        *r = r_queue[r_recv_first++];
378          return(1);
379   }
380  
381  
382   void
383 < ray_pdone(freall)               /* reap children and free data */
384 < int     freall;
383 > ray_pdone(              /* reap children and free data */
384 >        int     freall
385 > )
386   {
387          ray_pclose(0);                  /* close child processes */
388  
# Line 370 | Line 390 | int    freall;
390                  free((void *)shm_boundary);
391                  shm_boundary = NULL;
392          }
393 +
394          ray_done(freall);               /* free rendering data */
395   }
396  
397  
398   static void
399 < ray_pchild(fd_in, fd_out)       /* process rays (never returns) */
400 < int     fd_in;
401 < int     fd_out;
399 > ray_pchild(     /* process rays (never returns) */
400 >        int     fd_in,
401 >        int     fd_out
402 > )
403   {
404          int     n;
405          register int    i;
406 +                                        /* flag child process for quit() */
407 +        ray_pnprocs = -1;
408                                          /* read each ray request set */
409          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
410                  int     n2;
411 <                if (n % sizeof(RAY))
411 >                if (n < sizeof(RAY))
412                          break;
389                n /= sizeof(RAY);
413                                          /* get smuggled set length */
414 <                n2 = r_queue[0].crtype - n;
414 >                n2 = sizeof(RAY)*r_queue[0].crtype - n;
415                  if (n2 < 0)
416 <                        error(INTERNAL, "buffer over-read in ray_pchild");
416 >                        error(INTERNAL, "buffer over-read in ray_pchild()");
417                  if (n2 > 0) {           /* read the rest of the set */
418 <                        i = readbuf(fd_in, (char *)(r_queue+n),
419 <                                        sizeof(RAY)*n2);
397 <                        if (i != sizeof(RAY)*n2)
418 >                        i = readbuf(fd_in, (char *)r_queue + n, n2);
419 >                        if (i != n2)
420                                  break;
421                          n += n2;
422                  }
423 +                n /= sizeof(RAY);
424                                          /* evaluate rays */
425                  for (i = 0; i < n; i++) {
426                          r_queue[i].crtype = r_queue[i].rtype;
427                          r_queue[i].parent = NULL;
428                          r_queue[i].clipset = NULL;
429                          r_queue[i].slights = NULL;
430 <                        r_queue[i].revf = raytrace;
430 >                        r_queue[i].rlvl = 0;
431                          samplendx++;
432                          rayclear(&r_queue[i]);
433                          rayvalue(&r_queue[i]);
# Line 412 | Line 435 | int    fd_out;
435                                          /* write back our results */
436                  i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
437                  if (i != sizeof(RAY)*n)
438 <                        error(SYSTEM, "write error in ray_pchild");
438 >                        error(SYSTEM, "write error in ray_pchild()");
439          }
440          if (n)
441 <                error(SYSTEM, "read error in ray_pchild");
441 >                error(SYSTEM, "read error in ray_pchild()");
442          ambsync();
443          quit(0);                        /* normal exit */
444   }
445  
446  
447   void
448 < ray_popen(nadd)                 /* open the specified # processes */
449 < int     nadd;
448 > ray_popen(                      /* open the specified # processes */
449 >        int     nadd
450 > )
451   {
452                                          /* check if our table has room */
453 <        if (ray_nprocs + nadd > MAX_NPROCS)
454 <                nadd = MAX_NPROCS - ray_nprocs;
453 >        if (ray_pnprocs + nadd > MAX_NPROCS)
454 >                nadd = MAX_NPROCS - ray_pnprocs;
455          if (nadd <= 0)
456                  return;
457 <        fflush(stderr);                 /* clear pending output */
458 <        fflush(stdout);
457 >        ambsync();                      /* load any new ambient values */
458 >        if (shm_boundary == NULL) {     /* first child process? */
459 >                preload_objs();         /* preload auxiliary data */
460 >                                        /* set shared memory boundary */
461 >                shm_boundary = (char *)malloc(16);
462 >                strcpy(shm_boundary, "SHM_BOUNDARY");
463 >        }
464 >        fflush(NULL);                   /* clear pending output */
465          while (nadd--) {                /* fork each new process */
466                  int     p0[2], p1[2];
467                  if (pipe(p0) < 0 || pipe(p1) < 0)
468                          error(SYSTEM, "cannot create pipe");
469 <                if ((r_proc[ray_nprocs].pid = fork()) == 0) {
469 >                if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
470                          int     pn;     /* close others' descriptors */
471 <                        for (pn = ray_nprocs; pn--; ) {
471 >                        for (pn = ray_pnprocs; pn--; ) {
472                                  close(r_proc[pn].fd_send);
473                                  close(r_proc[pn].fd_recv);
474                          }
475                          close(p0[0]); close(p1[1]);
476 +                        close(0);       /* don't share stdin */
477                                          /* following call never returns */
478                          ray_pchild(p1[0], p0[1]);
479                  }
480 <                if (r_proc[ray_nprocs].pid < 0)
480 >                if (r_proc[ray_pnprocs].pid < 0)
481                          error(SYSTEM, "cannot fork child process");
482                  close(p1[0]); close(p0[1]);
483 <                r_proc[ray_nprocs].fd_send = p1[1];
484 <                r_proc[ray_nprocs].fd_recv = p0[0];
485 <                r_proc[ray_nprocs].npending = 0;
486 <                ray_nprocs++;
487 <                ray_idle++;
483 >                /*
484 >                 * Close write stream on exec to avoid multiprocessing deadlock.
485 >                 * No use in read stream without it, so set flag there as well.
486 >                 */
487 >                fcntl(p1[1], F_SETFD, FD_CLOEXEC);
488 >                fcntl(p0[0], F_SETFD, FD_CLOEXEC);
489 >                r_proc[ray_pnprocs].fd_send = p1[1];
490 >                r_proc[ray_pnprocs].fd_recv = p0[0];
491 >                r_proc[ray_pnprocs].npending = 0;
492 >                ray_pnprocs++;
493 >                ray_pnidle++;
494          }
495   }
496  
497  
498   void
499 < ray_pclose(nsub)                /* close one or more child processes */
500 < int     nsub;
499 > ray_pclose(             /* close one or more child processes */
500 >        int     nsub
501 > )
502   {
503          static int      inclose = 0;
504          RAY     res;
# Line 468 | Line 506 | int    nsub;
506          if (inclose)
507                  return;
508          inclose++;
509 +                                        /* check no child / in child */
510 +        if (ray_pnprocs <= 0)
511 +                return;
512                                          /* check argument */
513 <        if ((nsub <= 0 | nsub > ray_nprocs))
514 <                nsub = ray_nprocs;
513 >        if ((nsub <= 0) | (nsub > ray_pnprocs))
514 >                nsub = ray_pnprocs;
515                                          /* clear our ray queue */
516          while (ray_presult(&res,0) > 0)
517                  ;
518 +        r_send_next = 0;                /* hard reset in case of error */
519 +        r_recv_first = r_recv_next = RAYQLEN;
520                                          /* clean up children */
521          while (nsub--) {
522                  int     status;
523 <                ray_nprocs--;
524 <                close(r_proc[ray_nprocs].fd_recv);
525 <                close(r_proc[ray_nprocs].fd_send);
526 <                while (wait(&status) != r_proc[ray_nprocs].pid)
527 <                        ;
523 >                ray_pnprocs--;
524 >                close(r_proc[ray_pnprocs].fd_send);
525 >                if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
526 >                        status = 127<<8;
527 >                close(r_proc[ray_pnprocs].fd_recv);
528                  if (status) {
529                          sprintf(errmsg,
530                                  "rendering process %d exited with code %d",
531 <                                        r_proc[ray_nprocs].pid, status>>8);
531 >                                        r_proc[ray_pnprocs].pid, status>>8);
532                          error(WARNING, errmsg);
533                  }
534 <                ray_idle--;
534 >                ray_pnidle--;
535          }
536          inclose--;
494 }
495
496
497 void
498 quit(ec)                        /* make sure exit is called */
499 int     ec;
500 {
501        exit(ec);
537   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines