ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.4 by schorsch, Mon Jul 21 22:30:19 2003 UTC vs.
Revision 2.15 by greg, Wed Sep 12 03:57:00 2007 UTC

# Line 23 | Line 23 | static const char      RCSid[] = "$Id$";
23   *  The first step is opening one or more rendering processes
24   *  with a call to ray_pinit(oct, nproc).  Before calling fork(),
25   *  ray_pinit() loads the octree and data structures into the
26 < *  caller's memory.  This permits all sorts of queries that
27 < *  wouldn't be possible otherwise, without causing any real
26 > *  caller's memory, and ray_popen() synchronizes the ambient
27 > *  file, if any.  Shared memory permits all sorts of queries
28 > *  that wouldn't be possible otherwise, without causing any real
29   *  memory overhead, since all the static data are shared
30   *  between processes.  Rays are then traced using a simple
31   *  queuing mechanism, explained below.
32   *
33 < *  The ray queue holds as many rays as there are rendering
34 < *  processes.  Rays are queued and returned by a single
33 > *  The ray queue buffers RAYQLEN rays before sending to
34 > *  children, each of which may internally buffer RAYQLEN rays.
35 > *
36 > *  Rays are queued and returned by a single
37   *  ray_pqueue() call.  A ray_pqueue() return
38   *  value of 0 indicates that no rays are ready
39   *  and the queue is not yet full.  A return value of 1
# Line 43 | Line 46 | static const char      RCSid[] = "$Id$";
46   *      myRay.rorg = ( ray origin point )
47   *      myRay.rdir = ( normalized ray direction )
48   *      myRay.rmax = ( maximum length, or zero for no limit )
49 < *      rayorigin(&myRay, NULL, PRIMARY, 1.0);
49 > *      rayorigin(&myRay, PRIMARY, NULL, NULL);
50   *      myRay.rno = ( my personal ray identifier )
51   *      if (ray_pqueue(&myRay) == 1)
52   *              { do something with results }
# Line 51 | Line 54 | static const char      RCSid[] = "$Id$";
54   *  Note the differences between this and the simpler ray_trace()
55   *  call.  In particular, the call may or may not return a value
56   *  in the passed ray structure.  Also, you need to call rayorigin()
57 < *  yourself, which is normally for you by ray_trace().  The
58 < *  great thing is that ray_pqueue() will trace rays faster in
57 > *  yourself, which is normally called for you by ray_trace().  The
58 > *  benefit is that ray_pqueue() will trace rays faster in
59   *  proportion to the number of CPUs you have available on your
60   *  system.  If the ray queue is full before the call, ray_pqueue()
61   *  will block until a result is ready so it can queue this one.
# Line 81 | Line 84 | static const char      RCSid[] = "$Id$";
84   *              ray_psend(&myRay);
85   *      }
86   *
87 < *  The ray_presult() and/or ray_pqueue() functions may then be
88 < *  called to read back the results.
87 > *  Note that it is a fatal error to call ra_psend() when
88 > *  ray_pnidle is zero.  The ray_presult() and/or ray_pqueue()
89 > *  functions may be called subsequently to read back the results.
90   *
91   *  When you are done, you may call ray_pdone(1) to close
92   *  all child processes and clean up memory used by Radiance.
# Line 99 | Line 103 | static const char      RCSid[] = "$Id$";
103   *  If you just want to reap children so that you can alter the
104   *  rendering parameters without reloading the scene, use the
105   *  ray_pclose(0) and ray_popen(nproc) calls to close
106 < *  then restart the child processes.
106 > *  then restart the child processes after the changes are made.
107   *
108   *  Note:  These routines are written to coordinate with the
109   *  definitions in raycalls.c, and in fact depend on them.
110   *  If you want to trace a ray and get a result synchronously,
111   *  use the ray_trace() call to compute it in the parent process.
112 + *  This will not interfere with any subprocess calculations,
113 + *  but beware that a fatal error may end with a call to quit().
114   *
115   *  Note:  One of the advantages of using separate processes
116   *  is that it gives the calling program some immunity from
117   *  fatal rendering errors.  As discussed in raycalls.c,
118   *  Radiance tends to throw up its hands and exit at the
119   *  first sign of trouble, calling quit() to return control
120 < *  to the system.  Although you can avoid exit() with
120 > *  to the top level.  Although you can avoid exit() with
121   *  your own longjmp() in quit(), the cleanup afterwards
122   *  is always suspect.  Through the use of subprocesses,
123   *  we avoid this pitfall by closing the processes and
# Line 120 | Line 126 | static const char      RCSid[] = "$Id$";
126   *  of these calls, you can assume that the processes have
127   *  been cleaned up with a call to ray_close(), though you
128   *  will have to call ray_pdone() yourself if you want to
129 < *  free memory.  Obviously, you cannot continue rendering,
130 < *  but otherwise your process should not be compromised.
129 > *  free memory.  Obviously, you cannot continue rendering
130 > *  without risking further errors, but otherwise your
131 > *  process should not be compromised.
132   */
133  
134 < #include  "ray.h"
134 > #include <stdio.h>
135 > #include <sys/types.h>
136 > #include <sys/wait.h> /* XXX platform */
137  
138 + #include  "rtprocess.h"
139 + #include  "ray.h"
140 + #include  "ambient.h"
141   #include  "selcall.h"
142  
143   #ifndef RAYQLEN
144 < #define RAYQLEN         16              /* # rays to send at once */
144 > #define RAYQLEN         12              /* # rays to send at once */
145   #endif
146  
147   #ifndef MAX_RPROCS
# Line 160 | Line 172 | static int     r_recv_next;            /* next receive ray placement
172  
173   #define sendq_full()    (r_send_next >= RAYQLEN)
174  
175 + static int ray_pflush(void);
176 + static void ray_pchild(int fd_in, int fd_out);
177  
178 < void
179 < ray_pinit(otnm, nproc)          /* initialize ray-tracing processes */
180 < char    *otnm;
181 < int     nproc;
178 >
179 > extern void
180 > ray_pinit(              /* initialize ray-tracing processes */
181 >        char    *otnm,
182 >        int     nproc
183 > )
184   {
185          if (nobjects > 0)               /* close old calculation */
186                  ray_pdone(0);
# Line 185 | Line 201 | int    nproc;
201  
202  
203   static int
204 < ray_pflush()                    /* send queued rays to idle children */
204 > ray_pflush(void)                        /* send queued rays to idle children */
205   {
206          int     nc, n, nw, i, sfirst;
207  
208 <        if ((ray_pnidle <= 0 | r_send_next <= 0))
208 >        if ((ray_pnidle <= 0) | (r_send_next <= 0))
209                  return(0);              /* nothing we can send */
210          
211          sfirst = 0;                     /* divvy up labor */
# Line 219 | Line 235 | ray_pflush()                   /* send queued rays to idle children */
235   }
236  
237  
238 < void
239 < ray_psend(r)                    /* add a ray to our send queue */
240 < RAY     *r;
238 > extern void
239 > ray_psend(                      /* add a ray to our send queue */
240 >        RAY     *r
241 > )
242   {
243          if (r == NULL)
244                  return;
# Line 229 | Line 246 | RAY    *r;
246          if (sendq_full() && ray_pflush() <= 0)
247                  error(INTERNAL, "ray_pflush failed in ray_psend");
248  
249 <        r_queue[r_send_next] = *r;
233 <        r_send_next++;
249 >        r_queue[r_send_next++] = *r;
250   }
251  
252  
253 < int
254 < ray_pqueue(r)                   /* queue a ray for computation */
255 < RAY     *r;
253 > extern int
254 > ray_pqueue(                     /* queue a ray for computation */
255 >        RAY     *r
256 > )
257   {
258          if (r == NULL)
259                  return(0);
# Line 248 | Line 265 | RAY    *r;
265                                          /* wait for a result */
266                  rval = ray_presult(r, 0);
267                                          /* put new ray in queue */
268 <                r_queue[r_send_next] = mySend;
252 <                r_send_next++;
268 >                r_queue[r_send_next++] = mySend;
269                  return(rval);           /* done */
270          }
271 <                                        /* add ray to send queue */
272 <        r_queue[r_send_next] = *r;
257 <        r_send_next++;
271 >                                        /* else add ray to send queue */
272 >        r_queue[r_send_next++] = *r;
273                                          /* check for returned ray... */
274          if (r_recv_first >= r_recv_next)
275                  return(0);
276                                          /* ...one is sitting in queue */
277 <        *r = r_queue[r_recv_first];
263 <        r_recv_first++;
277 >        *r = r_queue[r_recv_first++];
278          return(1);
279   }
280  
281  
282 < int
283 < ray_presult(r, poll)            /* check for a completed ray */
284 < RAY     *r;
285 < int     poll;
282 > extern int
283 > ray_presult(            /* check for a completed ray */
284 >        RAY     *r,
285 >        int     poll
286 > )
287   {
288          static struct timeval   tpoll;  /* zero timeval struct */
289          static fd_set   readset, errset;
# Line 279 | Line 294 | int    poll;
294                  return(0);
295                                          /* check queued results first */
296          if (r_recv_first < r_recv_next) {
297 <                *r = r_queue[r_recv_first];
283 <                r_recv_first++;
297 >                *r = r_queue[r_recv_first++];
298                  return(1);
299          }
300          n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
# Line 354 | Line 368 | getready:                              /* any children waiting for us? */
368                  rp->slights = NULL;
369          }
370                                          /* return first ray received */
371 <        *r = r_queue[r_recv_first];
358 <        r_recv_first++;
371 >        *r = r_queue[r_recv_first++];
372          return(1);
373   }
374  
375  
376 < void
377 < ray_pdone(freall)               /* reap children and free data */
378 < int     freall;
376 > extern void
377 > ray_pdone(              /* reap children and free data */
378 >        int     freall
379 > )
380   {
381          ray_pclose(0);                  /* close child processes */
382  
# Line 375 | Line 389 | int    freall;
389  
390  
391   static void
392 < ray_pchild(fd_in, fd_out)       /* process rays (never returns) */
393 < int     fd_in;
394 < int     fd_out;
392 > ray_pchild(     /* process rays (never returns) */
393 >        int     fd_in,
394 >        int     fd_out
395 > )
396   {
397          int     n;
398          register int    i;
399 +                                        /* flag child process for quit() */
400 +        ray_pnprocs = -1;
401                                          /* read each ray request set */
402          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
403                  int     n2;
404 <                if (n % sizeof(RAY))
404 >                if (n < sizeof(RAY))
405                          break;
389                n /= sizeof(RAY);
406                                          /* get smuggled set length */
407 <                n2 = r_queue[0].crtype - n;
407 >                n2 = sizeof(RAY)*r_queue[0].crtype - n;
408                  if (n2 < 0)
409                          error(INTERNAL, "buffer over-read in ray_pchild");
410                  if (n2 > 0) {           /* read the rest of the set */
411 <                        i = readbuf(fd_in, (char *)(r_queue+n),
412 <                                        sizeof(RAY)*n2);
397 <                        if (i != sizeof(RAY)*n2)
411 >                        i = readbuf(fd_in, (char *)r_queue + n, n2);
412 >                        if (i != n2)
413                                  break;
414                          n += n2;
415                  }
416 +                n /= sizeof(RAY);
417                                          /* evaluate rays */
418                  for (i = 0; i < n; i++) {
419                          r_queue[i].crtype = r_queue[i].rtype;
420                          r_queue[i].parent = NULL;
421                          r_queue[i].clipset = NULL;
422                          r_queue[i].slights = NULL;
407                        r_queue[i].revf = raytrace;
423                          samplendx++;
424                          rayclear(&r_queue[i]);
425                          rayvalue(&r_queue[i]);
# Line 421 | Line 436 | int    fd_out;
436   }
437  
438  
439 < void
440 < ray_popen(nadd)                 /* open the specified # processes */
441 < int     nadd;
439 > extern void
440 > ray_popen(                      /* open the specified # processes */
441 >        int     nadd
442 > )
443   {
444                                          /* check if our table has room */
445          if (ray_pnprocs + nadd > MAX_NPROCS)
446                  nadd = MAX_NPROCS - ray_pnprocs;
447          if (nadd <= 0)
448                  return;
449 <        fflush(stderr);                 /* clear pending output */
450 <        fflush(stdout);
449 >        ambsync();                      /* load any new ambient values */
450 >        fflush(NULL);                   /* clear pending output */
451          while (nadd--) {                /* fork each new process */
452                  int     p0[2], p1[2];
453                  if (pipe(p0) < 0 || pipe(p1) < 0)
# Line 449 | Line 465 | int    nadd;
465                  if (r_proc[ray_pnprocs].pid < 0)
466                          error(SYSTEM, "cannot fork child process");
467                  close(p1[0]); close(p0[1]);
468 +                /*
469 +                 * Close write stream on exec to avoid multiprocessing deadlock.
470 +                 * No use in read stream without it, so set flag there as well.
471 +                 */
472 +                fcntl(p1[1], F_SETFD, FD_CLOEXEC);
473 +                fcntl(p0[0], F_SETFD, FD_CLOEXEC);
474                  r_proc[ray_pnprocs].fd_send = p1[1];
475                  r_proc[ray_pnprocs].fd_recv = p0[0];
476                  r_proc[ray_pnprocs].npending = 0;
# Line 458 | Line 480 | int    nadd;
480   }
481  
482  
483 < void
484 < ray_pclose(nsub)                /* close one or more child processes */
485 < int     nsub;
483 > extern void
484 > ray_pclose(             /* close one or more child processes */
485 >        int     nsub
486 > )
487   {
488          static int      inclose = 0;
489          RAY     res;
# Line 469 | Line 492 | int    nsub;
492                  return;
493          inclose++;
494                                          /* check argument */
495 <        if ((nsub <= 0 | nsub > ray_pnprocs))
495 >        if ((nsub <= 0) | (nsub > ray_pnprocs))
496                  nsub = ray_pnprocs;
497                                          /* clear our ray queue */
498          while (ray_presult(&res,0) > 0)
# Line 480 | Line 503 | int    nsub;
503                  ray_pnprocs--;
504                  close(r_proc[ray_pnprocs].fd_recv);
505                  close(r_proc[ray_pnprocs].fd_send);
506 <                while (wait(&status) != r_proc[ray_pnprocs].pid)
507 <                        ;
506 >                if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
507 >                        status = 127<<8;
508                  if (status) {
509                          sprintf(errmsg,
510                                  "rendering process %d exited with code %d",
# Line 498 | Line 521 | void
521   quit(ec)                        /* make sure exit is called */
522   int     ec;
523   {
524 +        if (ray_pnprocs > 0)    /* close children if any */
525 +                ray_pclose(0);          
526          exit(ec);
527   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines