ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.14 by greg, Wed Dec 21 17:36:06 2005 UTC vs.
Revision 2.28 by greg, Sat Aug 20 18:23:38 2011 UTC

# Line 13 | Line 13 | static const char      RCSid[] = "$Id$";
13   *  These calls are designed similarly to the ones in raycalls.c,
14   *  but allow for multiple rendering processes on the same host
15   *  machine.  There is no sense in specifying more child processes
16 < *  than you have processors, but one child may help by allowing
16 > *  than you have processor cores, but one child may help by allowing
17   *  asynchronous ray computation in an interactive program, and
18   *  will protect the caller from fatal rendering errors.
19   *
20 < *  You should first read and undrstand the header in raycalls.c,
20 > *  You should first read and understand the header in raycalls.c,
21   *  as some things are explained there that are not repated here.
22   *
23   *  The first step is opening one or more rendering processes
# Line 25 | Line 25 | static const char      RCSid[] = "$Id$";
25   *  ray_pinit() loads the octree and data structures into the
26   *  caller's memory, and ray_popen() synchronizes the ambient
27   *  file, if any.  Shared memory permits all sorts of queries
28 < *  that wouldn't be possible otherwise, without causing any real
28 > *  that wouldn't be possible otherwise without causing any real
29   *  memory overhead, since all the static data are shared
30 < *  between processes.  Rays are then traced using a simple
30 > *  between processes.  Rays are traced using a simple
31   *  queuing mechanism, explained below.
32   *
33   *  The ray queue buffers RAYQLEN rays before sending to
34 < *  children, each of which may internally buffer RAYQLEN rays.
34 > *  children, each of which may internally buffer RAYQLEN rays
35 > *  during evaluation.  Rays are not returned in the order
36 > *  they are sent when multiple processes are open.
37   *
38   *  Rays are queued and returned by a single
39   *  ray_pqueue() call.  A ray_pqueue() return
# Line 71 | Line 73 | static const char      RCSid[] = "$Id$";
73   *  results aren't ready, but will immediately return 0.
74   *  If the second argument is 0, the call will block
75   *  until a value is available, returning 0 only if the
76 < *  queue is completely empty.  A negative return value
76 > *  queue is completely empty.  Setting the second argument
77 > *  to -1 returns 0 unless a ray is ready in the queue and
78 > *  no system calls are needed.  A negative return value
79   *  indicates that a rendering process died.  If this
80 < *  happens, ray_close(0) is automatically called to close
80 > *  happens, ray_pclose(0) is automatically called to close
81   *  all child processes, and ray_pnprocs is set to zero.
82   *
83   *  If you just want to fill the ray queue without checking for
# Line 84 | Line 88 | static const char      RCSid[] = "$Id$";
88   *              ray_psend(&myRay);
89   *      }
90   *
91 < *  Note that it is a fatal error to call ra_psend() when
92 < *  ray_pnidle is zero.  The ray_presult() and/or ray_pqueue()
93 < *  functions may be called subsequently to read back the results.
91 > *  Note that it is a mistake to call ra_psend() when
92 > *  ray_pnidle is zero, and nothing will be sent in
93 > *  this case.  Otherwise, the ray_presult() and/or ray_pqueue()
94 > *  functions may be called subsequently to read back the results
95 > *  of rays queued by ray_psend().
96   *
97   *  When you are done, you may call ray_pdone(1) to close
98   *  all child processes and clean up memory used by Radiance.
99   *  Any queued ray calculations will be awaited and discarded.
100   *  As with ray_done(), ray_pdone(0) hangs onto data files
101   *  and fonts that are likely to be used in subsequent renderings.
102 < *  Whether you want to bother cleaning up memory or not, you
103 < *  should at least call ray_pclose(0) to clean the child processes.
102 > *  Whether you need to clean up memory or not, you should
103 > *  at least call ray_pclose(0) to await the child processes.
104 > *  The caller should define a quit() function that calls
105 > *  ray_pclose(0) if ray_pnprocs > 0.
106   *
107   *  Warning:  You cannot affect any of the rendering processes
108   *  by changing global parameter values onece ray_pinit() has
# Line 124 | Line 132 | static const char      RCSid[] = "$Id$";
132   *  returning a negative value from ray_pqueue() or
133   *  ray_presult().  If you get a negative value from either
134   *  of these calls, you can assume that the processes have
135 < *  been cleaned up with a call to ray_close(), though you
135 > *  been cleaned up with a call to ray_pclose(), though you
136   *  will have to call ray_pdone() yourself if you want to
137   *  free memory.  Obviously, you cannot continue rendering
138   *  without risking further errors, but otherwise your
139   *  process should not be compromised.
140   */
141  
134 #include <stdio.h>
135 #include <sys/types.h>
136 #include <sys/wait.h> /* XXX platform */
137
142   #include  "rtprocess.h"
143   #include  "ray.h"
144   #include  "ambient.h"
145 + #include  <sys/types.h>
146 + #include  <sys/wait.h>
147   #include  "selcall.h"
148  
149   #ifndef RAYQLEN
# Line 162 | Line 168 | static struct child_proc {
168          int     fd_send;                        /* write to child here */
169          int     fd_recv;                        /* read from child here */
170          int     npending;                       /* # rays in process */
171 <        unsigned long  rno[RAYQLEN];            /* working on these rays */
171 >        RNUMBER rno[RAYQLEN];                   /* working on these rays */
172   } r_proc[MAX_NPROCS];                   /* our child processes */
173  
174   static RAY      r_queue[2*RAYQLEN];     /* ray i/o buffer */
175 < static int      r_send_next;            /* next send ray placement */
176 < static int      r_recv_first;           /* position of first unreported ray */
177 < static int      r_recv_next;            /* next receive ray placement */
175 > static int      r_send_next = 0;        /* next send ray placement */
176 > static int      r_recv_first = RAYQLEN; /* position of first unreported ray */
177 > static int      r_recv_next = RAYQLEN;  /* next received ray placement */
178  
179 + static int      samplestep = 1;         /* sample step size */
180 +
181   #define sendq_full()    (r_send_next >= RAYQLEN)
182  
183   static int ray_pflush(void);
184   static void ray_pchild(int fd_in, int fd_out);
185  
186  
187 < extern void
187 > void
188   ray_pinit(              /* initialize ray-tracing processes */
189          char    *otnm,
190          int     nproc
# Line 187 | Line 195 | ray_pinit(             /* initialize ray-tracing processes */
195  
196          ray_init(otnm);                 /* load the shared scene */
197  
190        preload_objs();                 /* preload auxiliary data */
191
192                                        /* set shared memory boundary */
193        shm_boundary = (char *)malloc(16);
194        strcpy(shm_boundary, "SHM_BOUNDARY");
195
196        r_send_next = 0;                /* set up queue */
197        r_recv_first = r_recv_next = RAYQLEN;
198
198          ray_popen(nproc);               /* fork children */
199   }
200  
# Line 229 | Line 228 | ray_pflush(void)                       /* send queued rays to idle childre
228                  ray_pnidle--;           /* now she's busy */
229          }
230          if (sfirst != r_send_next)
231 <                error(CONSISTENCY, "code screwup in ray_pflush");
231 >                error(CONSISTENCY, "code screwup in ray_pflush()");
232          r_send_next = 0;
233          return(sfirst);                 /* return total # sent */
234   }
235  
236  
237 < extern void
237 > int
238   ray_psend(                      /* add a ray to our send queue */
239          RAY     *r
240   )
241   {
242 <        if (r == NULL)
243 <                return;
242 >        int     rv;
243 >
244 >        if ((r == NULL) | (ray_pnidle <= 0))
245 >                return(0);
246                                          /* flush output if necessary */
247 <        if (sendq_full() && ray_pflush() <= 0)
248 <                error(INTERNAL, "ray_pflush failed in ray_psend");
247 >        if (sendq_full() && (rv = ray_pflush()) <= 0)
248 >                return(rv);
249  
250          r_queue[r_send_next++] = *r;
251 +        return(1);
252   }
253  
254  
255 < extern int
255 > int
256   ray_pqueue(                     /* queue a ray for computation */
257          RAY     *r
258   )
# Line 259 | Line 261 | ray_pqueue(                    /* queue a ray for computation */
261                  return(0);
262                                          /* check for full send queue */
263          if (sendq_full()) {
264 <                RAY     mySend;
263 <                int     rval;
264 <                mySend = *r;
264 >                RAY     mySend = *r;
265                                          /* wait for a result */
266 <                rval = ray_presult(r, 0);
266 >                if (ray_presult(r, 0) <= 0)
267 >                        return(-1);
268                                          /* put new ray in queue */
269                  r_queue[r_send_next++] = mySend;
270 <                return(rval);           /* done */
270 >
271 >                return(1);
272          }
273                                          /* else add ray to send queue */
274          r_queue[r_send_next++] = *r;
# Line 279 | Line 281 | ray_pqueue(                    /* queue a ray for computation */
281   }
282  
283  
284 < extern int
284 > int
285   ray_presult(            /* check for a completed ray */
286          RAY     *r,
287          int     poll
# Line 297 | Line 299 | ray_presult(           /* check for a completed ray */
299                  *r = r_queue[r_recv_first++];
300                  return(1);
301          }
302 +        if (poll < 0)                   /* immediate polling mode? */
303 +                return(0);
304 +
305          n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
306  
307          if (ray_pflush() < 0)           /* send new rays to process */
# Line 308 | Line 313 | ray_presult(           /* check for a completed ray */
313                  n = ray_pnprocs - ray_pnidle;
314          if (n <= 0)                     /* return if nothing to await */
315                  return(0);
316 +        if (!poll && ray_pnprocs == 1)  /* one process -> skip select() */
317 +                FD_SET(r_proc[0].fd_recv, &readset);
318 +
319   getready:                               /* any children waiting for us? */
320          for (pn = ray_pnprocs; pn--; )
321                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
322                                  FD_ISSET(r_proc[pn].fd_recv, &errset))
323                          break;
324 <                                        /* call select if we must */
324 >                                        /* call select() if we must */
325          if (pn < 0) {
326                  FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
327                  for (pn = ray_pnprocs; pn--; ) {
# Line 328 | Line 336 | getready:                              /* any children waiting for us? */
336                                  poll ? &tpoll : (struct timeval *)NULL)) < 0)
337                          if (errno != EINTR) {
338                                  error(WARNING,
339 <                                        "select call failed in ray_presult");
339 >                                        "select call failed in ray_presult()");
340                                  ray_pclose(0);
341                                  return(-1);
342                          }
# Line 373 | Line 381 | getready:                              /* any children waiting for us? */
381   }
382  
383  
384 < extern void
384 > void
385   ray_pdone(              /* reap children and free data */
386          int     freall
387   )
# Line 384 | Line 392 | ray_pdone(             /* reap children and free data */
392                  free((void *)shm_boundary);
393                  shm_boundary = NULL;
394          }
395 +
396          ray_done(freall);               /* free rendering data */
397   }
398  
# Line 396 | Line 405 | ray_pchild(    /* process rays (never returns) */
405   {
406          int     n;
407          register int    i;
408 +                                        /* flag child process for quit() */
409 +        ray_pnprocs = -1;
410                                          /* read each ray request set */
411          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
412                  int     n2;
# Line 404 | Line 415 | ray_pchild(    /* process rays (never returns) */
415                                          /* get smuggled set length */
416                  n2 = sizeof(RAY)*r_queue[0].crtype - n;
417                  if (n2 < 0)
418 <                        error(INTERNAL, "buffer over-read in ray_pchild");
418 >                        error(INTERNAL, "buffer over-read in ray_pchild()");
419                  if (n2 > 0) {           /* read the rest of the set */
420                          i = readbuf(fd_in, (char *)r_queue + n, n2);
421                          if (i != n2)
# Line 418 | Line 429 | ray_pchild(    /* process rays (never returns) */
429                          r_queue[i].parent = NULL;
430                          r_queue[i].clipset = NULL;
431                          r_queue[i].slights = NULL;
432 <                        samplendx++;
432 >                        r_queue[i].rlvl = 0;
433 >                        samplendx += samplestep;
434                          rayclear(&r_queue[i]);
435                          rayvalue(&r_queue[i]);
436                  }
437                                          /* write back our results */
438                  i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
439                  if (i != sizeof(RAY)*n)
440 <                        error(SYSTEM, "write error in ray_pchild");
440 >                        error(SYSTEM, "write error in ray_pchild()");
441          }
442          if (n)
443 <                error(SYSTEM, "read error in ray_pchild");
443 >                error(SYSTEM, "read error in ray_pchild()");
444          ambsync();
445          quit(0);                        /* normal exit */
446   }
447  
448  
449 < extern void
449 > void
450   ray_popen(                      /* open the specified # processes */
451          int     nadd
452   )
# Line 445 | Line 457 | ray_popen(                     /* open the specified # processes */
457          if (nadd <= 0)
458                  return;
459          ambsync();                      /* load any new ambient values */
460 +        if (shm_boundary == NULL) {     /* first child process? */
461 +                preload_objs();         /* preload auxiliary data */
462 +                                        /* set shared memory boundary */
463 +                shm_boundary = (char *)malloc(16);
464 +                strcpy(shm_boundary, "SHM_BOUNDARY");
465 +        }
466          fflush(NULL);                   /* clear pending output */
467 +        samplestep = ray_pnprocs + nadd;
468          while (nadd--) {                /* fork each new process */
469                  int     p0[2], p1[2];
470                  if (pipe(p0) < 0 || pipe(p1) < 0)
# Line 457 | Line 476 | ray_popen(                     /* open the specified # processes */
476                                  close(r_proc[pn].fd_recv);
477                          }
478                          close(p0[0]); close(p1[1]);
479 +                        close(0);       /* don't share stdin */
480                                          /* following call never returns */
481                          ray_pchild(p1[0], p0[1]);
482                  }
483                  if (r_proc[ray_pnprocs].pid < 0)
484                          error(SYSTEM, "cannot fork child process");
485                  close(p1[0]); close(p0[1]);
486 +                if (rand_samp)          /* decorrelate random sequence */
487 +                        srandom(random());
488 +                else
489 +                        samplendx++;
490                  /*
491                   * Close write stream on exec to avoid multiprocessing deadlock.
492                   * No use in read stream without it, so set flag there as well.
# Line 478 | Line 502 | ray_popen(                     /* open the specified # processes */
502   }
503  
504  
505 < extern void
505 > void
506   ray_pclose(             /* close one or more child processes */
507          int     nsub
508   )
# Line 489 | Line 513 | ray_pclose(            /* close one or more child processes */
513          if (inclose)
514                  return;
515          inclose++;
516 +                                        /* check no child / in child */
517 +        if (ray_pnprocs <= 0)
518 +                return;
519                                          /* check argument */
520          if ((nsub <= 0) | (nsub > ray_pnprocs))
521                  nsub = ray_pnprocs;
522                                          /* clear our ray queue */
523          while (ray_presult(&res,0) > 0)
524                  ;
525 +        r_send_next = 0;                /* hard reset in case of error */
526 +        r_recv_first = r_recv_next = RAYQLEN;
527                                          /* clean up children */
528          while (nsub--) {
529                  int     status;
530                  ray_pnprocs--;
502                close(r_proc[ray_pnprocs].fd_recv);
531                  close(r_proc[ray_pnprocs].fd_send);
532                  if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
533                          status = 127<<8;
534 +                close(r_proc[ray_pnprocs].fd_recv);
535                  if (status) {
536                          sprintf(errmsg,
537                                  "rendering process %d exited with code %d",
# Line 512 | Line 541 | ray_pclose(            /* close one or more child processes */
541                  ray_pnidle--;
542          }
543          inclose--;
515 }
516
517
518 void
519 quit(ec)                        /* make sure exit is called */
520 int     ec;
521 {
522        exit(ec);
544   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines