ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.4 by schorsch, Mon Jul 21 22:30:19 2003 UTC vs.
Revision 2.12 by greg, Sat Dec 17 22:17:51 2005 UTC

# Line 43 | Line 43 | static const char      RCSid[] = "$Id$";
43   *      myRay.rorg = ( ray origin point )
44   *      myRay.rdir = ( normalized ray direction )
45   *      myRay.rmax = ( maximum length, or zero for no limit )
46 < *      rayorigin(&myRay, NULL, PRIMARY, 1.0);
46 > *      rayorigin(&myRay, PRIMARY, NULL, NULL);
47   *      myRay.rno = ( my personal ray identifier )
48   *      if (ray_pqueue(&myRay) == 1)
49   *              { do something with results }
# Line 51 | Line 51 | static const char      RCSid[] = "$Id$";
51   *  Note the differences between this and the simpler ray_trace()
52   *  call.  In particular, the call may or may not return a value
53   *  in the passed ray structure.  Also, you need to call rayorigin()
54 < *  yourself, which is normally for you by ray_trace().  The
55 < *  great thing is that ray_pqueue() will trace rays faster in
54 > *  yourself, which is normally called for you by ray_trace().  The
55 > *  benefit is that ray_pqueue() will trace rays faster in
56   *  proportion to the number of CPUs you have available on your
57   *  system.  If the ray queue is full before the call, ray_pqueue()
58   *  will block until a result is ready so it can queue this one.
# Line 81 | Line 81 | static const char      RCSid[] = "$Id$";
81   *              ray_psend(&myRay);
82   *      }
83   *
84 < *  The ray_presult() and/or ray_pqueue() functions may then be
85 < *  called to read back the results.
84 > *  Note that it is a fatal error to call ra_psend() when
85 > *  ray_pnidle is zero.  The ray_presult() and/or ray_pqueue()
86 > *  functions may be called subsequently to read back the results.
87   *
88   *  When you are done, you may call ray_pdone(1) to close
89   *  all child processes and clean up memory used by Radiance.
# Line 99 | Line 100 | static const char      RCSid[] = "$Id$";
100   *  If you just want to reap children so that you can alter the
101   *  rendering parameters without reloading the scene, use the
102   *  ray_pclose(0) and ray_popen(nproc) calls to close
103 < *  then restart the child processes.
103 > *  then restart the child processes after the changes are made.
104   *
105   *  Note:  These routines are written to coordinate with the
106   *  definitions in raycalls.c, and in fact depend on them.
107   *  If you want to trace a ray and get a result synchronously,
108 < *  use the ray_trace() call to compute it in the parent process.
108 > *  use the ray_trace() call to compute it in the parent process
109 > *  This will not interfere with any subprocess calculations,
110 > *  but beware that a fatal error may end with a call to quit().
111   *
112   *  Note:  One of the advantages of using separate processes
113   *  is that it gives the calling program some immunity from
114   *  fatal rendering errors.  As discussed in raycalls.c,
115   *  Radiance tends to throw up its hands and exit at the
116   *  first sign of trouble, calling quit() to return control
117 < *  to the system.  Although you can avoid exit() with
117 > *  to the top level.  Although you can avoid exit() with
118   *  your own longjmp() in quit(), the cleanup afterwards
119   *  is always suspect.  Through the use of subprocesses,
120   *  we avoid this pitfall by closing the processes and
# Line 120 | Line 123 | static const char      RCSid[] = "$Id$";
123   *  of these calls, you can assume that the processes have
124   *  been cleaned up with a call to ray_close(), though you
125   *  will have to call ray_pdone() yourself if you want to
126 < *  free memory.  Obviously, you cannot continue rendering,
127 < *  but otherwise your process should not be compromised.
126 > *  free memory.  Obviously, you cannot continue rendering
127 > *  without risking further errors, but otherwise your
128 > *  process should not be compromised.
129   */
130  
131 < #include  "ray.h"
131 > #include <stdio.h>
132 > #include <sys/types.h>
133 > #include <sys/wait.h> /* XXX platform */
134  
135 + #include  "rtprocess.h"
136 + #include  "ray.h"
137 + #include  "ambient.h"
138   #include  "selcall.h"
139  
140   #ifndef RAYQLEN
# Line 160 | Line 169 | static int     r_recv_next;            /* next receive ray placement
169  
170   #define sendq_full()    (r_send_next >= RAYQLEN)
171  
172 + static int ray_pflush(void);
173 + static void ray_pchild(int      fd_in, int      fd_out);
174  
175 < void
176 < ray_pinit(otnm, nproc)          /* initialize ray-tracing processes */
177 < char    *otnm;
178 < int     nproc;
175 >
176 > extern void
177 > ray_pinit(              /* initialize ray-tracing processes */
178 >        char    *otnm,
179 >        int     nproc
180 > )
181   {
182          if (nobjects > 0)               /* close old calculation */
183                  ray_pdone(0);
# Line 185 | Line 198 | int    nproc;
198  
199  
200   static int
201 < ray_pflush()                    /* send queued rays to idle children */
201 > ray_pflush(void)                        /* send queued rays to idle children */
202   {
203          int     nc, n, nw, i, sfirst;
204  
205 <        if ((ray_pnidle <= 0 | r_send_next <= 0))
205 >        if ((ray_pnidle <= 0) | (r_send_next <= 0))
206                  return(0);              /* nothing we can send */
207          
208          sfirst = 0;                     /* divvy up labor */
# Line 219 | Line 232 | ray_pflush()                   /* send queued rays to idle children */
232   }
233  
234  
235 < void
236 < ray_psend(r)                    /* add a ray to our send queue */
237 < RAY     *r;
235 > extern void
236 > ray_psend(                      /* add a ray to our send queue */
237 >        RAY     *r
238 > )
239   {
240          if (r == NULL)
241                  return;
# Line 234 | Line 248 | RAY    *r;
248   }
249  
250  
251 < int
252 < ray_pqueue(r)                   /* queue a ray for computation */
253 < RAY     *r;
251 > extern int
252 > ray_pqueue(                     /* queue a ray for computation */
253 >        RAY     *r
254 > )
255   {
256          if (r == NULL)
257                  return(0);
# Line 265 | Line 280 | RAY    *r;
280   }
281  
282  
283 < int
284 < ray_presult(r, poll)            /* check for a completed ray */
285 < RAY     *r;
286 < int     poll;
283 > extern int
284 > ray_presult(            /* check for a completed ray */
285 >        RAY     *r,
286 >        int     poll
287 > )
288   {
289          static struct timeval   tpoll;  /* zero timeval struct */
290          static fd_set   readset, errset;
# Line 360 | Line 376 | getready:                              /* any children waiting for us? */
376   }
377  
378  
379 < void
380 < ray_pdone(freall)               /* reap children and free data */
381 < int     freall;
379 > extern void
380 > ray_pdone(              /* reap children and free data */
381 >        int     freall
382 > )
383   {
384          ray_pclose(0);                  /* close child processes */
385  
# Line 375 | Line 392 | int    freall;
392  
393  
394   static void
395 < ray_pchild(fd_in, fd_out)       /* process rays (never returns) */
396 < int     fd_in;
397 < int     fd_out;
395 > ray_pchild(     /* process rays (never returns) */
396 >        int     fd_in,
397 >        int     fd_out
398 > )
399   {
400          int     n;
401          register int    i;
402                                          /* read each ray request set */
403          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
404                  int     n2;
405 <                if (n % sizeof(RAY))
405 >                if (n < sizeof(RAY))
406                          break;
389                n /= sizeof(RAY);
407                                          /* get smuggled set length */
408 <                n2 = r_queue[0].crtype - n;
408 >                n2 = sizeof(RAY)*r_queue[0].crtype - n;
409                  if (n2 < 0)
410                          error(INTERNAL, "buffer over-read in ray_pchild");
411                  if (n2 > 0) {           /* read the rest of the set */
412 <                        i = readbuf(fd_in, (char *)(r_queue+n),
413 <                                        sizeof(RAY)*n2);
397 <                        if (i != sizeof(RAY)*n2)
412 >                        i = readbuf(fd_in, (char *)r_queue + n, n2);
413 >                        if (i != n2)
414                                  break;
415                          n += n2;
416                  }
417 +                n /= sizeof(RAY);
418                                          /* evaluate rays */
419                  for (i = 0; i < n; i++) {
420                          r_queue[i].crtype = r_queue[i].rtype;
421                          r_queue[i].parent = NULL;
422                          r_queue[i].clipset = NULL;
423                          r_queue[i].slights = NULL;
407                        r_queue[i].revf = raytrace;
424                          samplendx++;
425                          rayclear(&r_queue[i]);
426                          rayvalue(&r_queue[i]);
# Line 421 | Line 437 | int    fd_out;
437   }
438  
439  
440 < void
441 < ray_popen(nadd)                 /* open the specified # processes */
442 < int     nadd;
440 > extern void
441 > ray_popen(                      /* open the specified # processes */
442 >        int     nadd
443 > )
444   {
445                                          /* check if our table has room */
446          if (ray_pnprocs + nadd > MAX_NPROCS)
# Line 449 | Line 466 | int    nadd;
466                  if (r_proc[ray_pnprocs].pid < 0)
467                          error(SYSTEM, "cannot fork child process");
468                  close(p1[0]); close(p0[1]);
469 +                /*
470 +                 * Close write stream on exec to avoid multiprocessing deadlock.
471 +                 * No use in read stream without it, so set flag there as well.
472 +                 */
473 +                fcntl(p1[1], F_SETFD, FD_CLOEXEC);
474 +                fcntl(p0[0], F_SETFD, FD_CLOEXEC);
475                  r_proc[ray_pnprocs].fd_send = p1[1];
476                  r_proc[ray_pnprocs].fd_recv = p0[0];
477                  r_proc[ray_pnprocs].npending = 0;
# Line 458 | Line 481 | int    nadd;
481   }
482  
483  
484 < void
485 < ray_pclose(nsub)                /* close one or more child processes */
486 < int     nsub;
484 > extern void
485 > ray_pclose(             /* close one or more child processes */
486 >        int     nsub
487 > )
488   {
489          static int      inclose = 0;
490          RAY     res;
# Line 469 | Line 493 | int    nsub;
493                  return;
494          inclose++;
495                                          /* check argument */
496 <        if ((nsub <= 0 | nsub > ray_pnprocs))
496 >        if ((nsub <= 0) | (nsub > ray_pnprocs))
497                  nsub = ray_pnprocs;
498                                          /* clear our ray queue */
499          while (ray_presult(&res,0) > 0)
# Line 480 | Line 504 | int    nsub;
504                  ray_pnprocs--;
505                  close(r_proc[ray_pnprocs].fd_recv);
506                  close(r_proc[ray_pnprocs].fd_send);
507 <                while (wait(&status) != r_proc[ray_pnprocs].pid)
508 <                        ;
507 >                if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
508 >                        status = 127<<8;
509                  if (status) {
510                          sprintf(errmsg,
511                                  "rendering process %d exited with code %d",

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines