ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.1 by greg, Sat Feb 22 02:07:29 2003 UTC vs.
Revision 2.17 by greg, Tue Sep 18 19:10:02 2007 UTC

# Line 7 | Line 7 | static const char      RCSid[] = "$Id$";
7   *  External symbols declared in ray.h
8   */
9  
10 < /* ====================================================================
11 < * The Radiance Software License, Version 1.0
12 < *
13 < * Copyright (c) 1990 - 2002 The Regents of the University of California,
14 < * through Lawrence Berkeley National Laboratory.   All rights reserved.
15 < *
16 < * Redistribution and use in source and binary forms, with or without
17 < * modification, are permitted provided that the following conditions
18 < * are met:
19 < *
20 < * 1. Redistributions of source code must retain the above copyright
21 < *         notice, this list of conditions and the following disclaimer.
22 < *
23 < * 2. Redistributions in binary form must reproduce the above copyright
24 < *       notice, this list of conditions and the following disclaimer in
25 < *       the documentation and/or other materials provided with the
26 < *       distribution.
27 < *
28 < * 3. The end-user documentation included with the redistribution,
29 < *           if any, must include the following acknowledgment:
30 < *             "This product includes Radiance software
31 < *                 (http://radsite.lbl.gov/)
32 < *                 developed by the Lawrence Berkeley National Laboratory
33 < *               (http://www.lbl.gov/)."
34 < *       Alternately, this acknowledgment may appear in the software itself,
35 < *       if and wherever such third-party acknowledgments normally appear.
36 < *
37 < * 4. The names "Radiance," "Lawrence Berkeley National Laboratory"
38 < *       and "The Regents of the University of California" must
39 < *       not be used to endorse or promote products derived from this
40 < *       software without prior written permission. For written
41 < *       permission, please contact [email protected].
42 < *
43 < * 5. Products derived from this software may not be called "Radiance",
44 < *       nor may "Radiance" appear in their name, without prior written
45 < *       permission of Lawrence Berkeley National Laboratory.
46 < *
47 < * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
48 < * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49 < * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
50 < * DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
51 < * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 < * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 < * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 < * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 < * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 < * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 < * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 < * SUCH DAMAGE.
59 < * ====================================================================
60 < *
61 < * This software consists of voluntary contributions made by many
62 < * individuals on behalf of Lawrence Berkeley National Laboratory.   For more
63 < * information on Lawrence Berkeley National Laboratory, please see
64 < * <http://www.lbl.gov/>.
65 < */
10 > #include "copyright.h"
11  
12   /*
13   *  These calls are designed similarly to the ones in raycalls.c,
# Line 78 | Line 23 | static const char      RCSid[] = "$Id$";
23   *  The first step is opening one or more rendering processes
24   *  with a call to ray_pinit(oct, nproc).  Before calling fork(),
25   *  ray_pinit() loads the octree and data structures into the
26 < *  caller's memory.  This permits all sorts of queries that
27 < *  wouldn't be possible otherwise, without causing any real
26 > *  caller's memory, and ray_popen() synchronizes the ambient
27 > *  file, if any.  Shared memory permits all sorts of queries
28 > *  that wouldn't be possible otherwise, without causing any real
29   *  memory overhead, since all the static data are shared
30   *  between processes.  Rays are then traced using a simple
31   *  queuing mechanism, explained below.
32   *
33 < *  The ray queue holds as many rays as there are rendering
34 < *  processes.  Rays are queued and returned by a single
33 > *  The ray queue buffers RAYQLEN rays before sending to
34 > *  children, each of which may internally buffer RAYQLEN rays.
35 > *
36 > *  Rays are queued and returned by a single
37   *  ray_pqueue() call.  A ray_pqueue() return
38   *  value of 0 indicates that no rays are ready
39   *  and the queue is not yet full.  A return value of 1
# Line 98 | Line 46 | static const char      RCSid[] = "$Id$";
46   *      myRay.rorg = ( ray origin point )
47   *      myRay.rdir = ( normalized ray direction )
48   *      myRay.rmax = ( maximum length, or zero for no limit )
49 < *      rayorigin(&myRay, NULL, PRIMARY, 1.0);
49 > *      rayorigin(&myRay, PRIMARY, NULL, NULL);
50   *      myRay.rno = ( my personal ray identifier )
51   *      if (ray_pqueue(&myRay) == 1)
52   *              { do something with results }
# Line 106 | Line 54 | static const char      RCSid[] = "$Id$";
54   *  Note the differences between this and the simpler ray_trace()
55   *  call.  In particular, the call may or may not return a value
56   *  in the passed ray structure.  Also, you need to call rayorigin()
57 < *  yourself, which is normally for you by ray_trace().  The
58 < *  great thing is that ray_pqueue() will trace rays faster in
57 > *  yourself, which is normally called for you by ray_trace().  The
58 > *  benefit is that ray_pqueue() will trace rays faster in
59   *  proportion to the number of CPUs you have available on your
60   *  system.  If the ray queue is full before the call, ray_pqueue()
61   *  will block until a result is ready so it can queue this one.
62 < *  The global int ray_idle indicates the number of currently idle
62 > *  The global int ray_pnidle indicates the number of currently idle
63   *  children.  If you want to check for completed rays without blocking,
64   *  or get the results from rays that have been queued without
65   *  queuing any new ones, the ray_presult() call is for you:
# Line 126 | Line 74 | static const char      RCSid[] = "$Id$";
74   *  queue is completely empty.  A negative return value
75   *  indicates that a rendering process died.  If this
76   *  happens, ray_close(0) is automatically called to close
77 < *  all child processes, and ray_nprocs is set to zero.
77 > *  all child processes, and ray_pnprocs is set to zero.
78   *
79   *  If you just want to fill the ray queue without checking for
80 < *  results, check ray_idle and call ray_psend():
80 > *  results, check ray_pnidle and call ray_psend():
81   *
82 < *      while (ray_idle) {
82 > *      while (ray_pnidle) {
83   *              ( set up ray )
84   *              ray_psend(&myRay);
85   *      }
86   *
87 < *  The ray_presult() and/or ray_pqueue() functions may then be
88 < *  called to read back the results.
87 > *  Note that it is a fatal error to call ra_psend() when
88 > *  ray_pnidle is zero.  The ray_presult() and/or ray_pqueue()
89 > *  functions may be called subsequently to read back the results.
90   *
91   *  When you are done, you may call ray_pdone(1) to close
92   *  all child processes and clean up memory used by Radiance.
# Line 154 | Line 103 | static const char      RCSid[] = "$Id$";
103   *  If you just want to reap children so that you can alter the
104   *  rendering parameters without reloading the scene, use the
105   *  ray_pclose(0) and ray_popen(nproc) calls to close
106 < *  then restart the child processes.
106 > *  then restart the child processes after the changes are made.
107   *
108   *  Note:  These routines are written to coordinate with the
109   *  definitions in raycalls.c, and in fact depend on them.
110   *  If you want to trace a ray and get a result synchronously,
111   *  use the ray_trace() call to compute it in the parent process.
112 + *  This will not interfere with any subprocess calculations,
113 + *  but beware that a fatal error may end with a call to quit().
114   *
115   *  Note:  One of the advantages of using separate processes
116   *  is that it gives the calling program some immunity from
117   *  fatal rendering errors.  As discussed in raycalls.c,
118   *  Radiance tends to throw up its hands and exit at the
119   *  first sign of trouble, calling quit() to return control
120 < *  to the system.  Although you can avoid exit() with
120 > *  to the top level.  Although you can avoid exit() with
121   *  your own longjmp() in quit(), the cleanup afterwards
122   *  is always suspect.  Through the use of subprocesses,
123   *  we avoid this pitfall by closing the processes and
# Line 175 | Line 126 | static const char      RCSid[] = "$Id$";
126   *  of these calls, you can assume that the processes have
127   *  been cleaned up with a call to ray_close(), though you
128   *  will have to call ray_pdone() yourself if you want to
129 < *  free memory.  Obviously, you cannot continue rendering,
130 < *  but otherwise your process should not be compromised.
129 > *  free memory.  Obviously, you cannot continue rendering
130 > *  without risking further errors, but otherwise your
131 > *  process should not be compromised.
132   */
133  
134 < #include  "ray.h"
134 > #include <stdio.h>
135 > #include <sys/types.h>
136 > #include <sys/wait.h> /* XXX platform */
137  
138 + #include  "rtprocess.h"
139 + #include  "ray.h"
140 + #include  "ambient.h"
141   #include  "selcall.h"
142  
143   #ifndef RAYQLEN
144 < #define RAYQLEN         16              /* # rays to send at once */
144 > #define RAYQLEN         12              /* # rays to send at once */
145   #endif
146  
147   #ifndef MAX_RPROCS
# Line 197 | Line 154 | static const char      RCSid[] = "$Id$";
154  
155   extern char     *shm_boundary;          /* boundary of shared memory */
156  
157 < int             ray_nprocs = 0;         /* number of child processes */
158 < int             ray_idle = 0;           /* number of idle children */
157 > int             ray_pnprocs = 0;        /* number of child processes */
158 > int             ray_pnidle = 0;         /* number of idle children */
159  
160   static struct child_proc {
161          int     pid;                            /* child process id */
# Line 215 | Line 172 | static int     r_recv_next;            /* next receive ray placement
172  
173   #define sendq_full()    (r_send_next >= RAYQLEN)
174  
175 + static int ray_pflush(void);
176 + static void ray_pchild(int fd_in, int fd_out);
177  
178 < void
179 < ray_pinit(otnm, nproc)          /* initialize ray-tracing processes */
180 < char    *otnm;
181 < int     nproc;
178 >
179 > extern void
180 > ray_pinit(              /* initialize ray-tracing processes */
181 >        char    *otnm,
182 >        int     nproc
183 > )
184   {
185          if (nobjects > 0)               /* close old calculation */
186                  ray_pdone(0);
# Line 240 | Line 201 | int    nproc;
201  
202  
203   static int
204 < ray_pflush()                    /* send queued rays to idle children */
204 > ray_pflush(void)                        /* send queued rays to idle children */
205   {
206          int     nc, n, nw, i, sfirst;
207  
208 <        if ((ray_idle <= 0 | r_send_next <= 0))
208 >        if ((ray_pnidle <= 0) | (r_send_next <= 0))
209                  return(0);              /* nothing we can send */
210          
211          sfirst = 0;                     /* divvy up labor */
212 <        nc = ray_idle;
213 <        for (i = ray_nprocs; nc && i--; ) {
212 >        nc = ray_pnidle;
213 >        for (i = ray_pnprocs; nc && i--; ) {
214                  if (r_proc[i].npending > 0)
215                          continue;       /* child looks busy */
216                  n = (r_send_next - sfirst)/nc--;
# Line 265 | Line 226 | ray_pflush()                   /* send queued rays to idle children */
226                  while (n--)             /* record ray IDs */
227                          r_proc[i].rno[n] = r_queue[sfirst+n].rno;
228                  sfirst += r_proc[i].npending;
229 <                ray_idle--;             /* now she's busy */
229 >                ray_pnidle--;           /* now she's busy */
230          }
231          if (sfirst != r_send_next)
232                  error(CONSISTENCY, "code screwup in ray_pflush");
# Line 274 | Line 235 | ray_pflush()                   /* send queued rays to idle children */
235   }
236  
237  
238 < void
239 < ray_psend(r)                    /* add a ray to our send queue */
240 < RAY     *r;
238 > extern void
239 > ray_psend(                      /* add a ray to our send queue */
240 >        RAY     *r
241 > )
242   {
243          if (r == NULL)
244                  return;
# Line 284 | Line 246 | RAY    *r;
246          if (sendq_full() && ray_pflush() <= 0)
247                  error(INTERNAL, "ray_pflush failed in ray_psend");
248  
249 <        copystruct(&r_queue[r_send_next], r);
288 <        r_send_next++;
249 >        r_queue[r_send_next++] = *r;
250   }
251  
252  
253 < int
254 < ray_pqueue(r)                   /* queue a ray for computation */
255 < RAY     *r;
253 > extern int
254 > ray_pqueue(                     /* queue a ray for computation */
255 >        RAY     *r
256 > )
257   {
258          if (r == NULL)
259                  return(0);
# Line 299 | Line 261 | RAY    *r;
261          if (sendq_full()) {
262                  RAY     mySend;
263                  int     rval;
264 <                copystruct(&mySend, r);
264 >                mySend = *r;
265                                          /* wait for a result */
266                  rval = ray_presult(r, 0);
267                                          /* put new ray in queue */
268 <                copystruct(&r_queue[r_send_next], &mySend);
307 <                r_send_next++;
268 >                r_queue[r_send_next++] = mySend;
269                  return(rval);           /* done */
270          }
271 <                                        /* add ray to send queue */
272 <        copystruct(&r_queue[r_send_next], r);
312 <        r_send_next++;
271 >                                        /* else add ray to send queue */
272 >        r_queue[r_send_next++] = *r;
273                                          /* check for returned ray... */
274          if (r_recv_first >= r_recv_next)
275                  return(0);
276                                          /* ...one is sitting in queue */
277 <        copystruct(r, &r_queue[r_recv_first]);
318 <        r_recv_first++;
277 >        *r = r_queue[r_recv_first++];
278          return(1);
279   }
280  
281  
282 < int
283 < ray_presult(r, poll)            /* check for a completed ray */
284 < RAY     *r;
285 < int     poll;
282 > extern int
283 > ray_presult(            /* check for a completed ray */
284 >        RAY     *r,
285 >        int     poll
286 > )
287   {
288          static struct timeval   tpoll;  /* zero timeval struct */
289          static fd_set   readset, errset;
# Line 334 | Line 294 | int    poll;
294                  return(0);
295                                          /* check queued results first */
296          if (r_recv_first < r_recv_next) {
297 <                copystruct(r, &r_queue[r_recv_first]);
298 <                r_recv_first++;
297 >                *r = r_queue[r_recv_first++];
298 >                                        /* make sure send queue has room */
299 >                if (sendq_full() && ray_pflush() <= 0)
300 >                        return(-1);
301                  return(1);
302          }
303 <        n = ray_nprocs - ray_idle;      /* pending before flush? */
303 >        n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
304  
305          if (ray_pflush() < 0)           /* send new rays to process */
306                  return(-1);
# Line 346 | Line 308 | int    poll;
308          r_recv_first = r_recv_next = RAYQLEN;
309  
310          if (!poll)                      /* count newly sent unless polling */
311 <                n = ray_nprocs - ray_idle;
311 >                n = ray_pnprocs - ray_pnidle;
312          if (n <= 0)                     /* return if nothing to await */
313                  return(0);
314 +        if (!poll && ray_pnprocs == 1)  /* one process -> skip select() */
315 +                FD_SET(r_proc[0].fd_recv, &readset);
316 +
317   getready:                               /* any children waiting for us? */
318 <        for (pn = ray_nprocs; pn--; )
318 >        for (pn = ray_pnprocs; pn--; )
319                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
320                                  FD_ISSET(r_proc[pn].fd_recv, &errset))
321                          break;
322                                          /* call select if we must */
323          if (pn < 0) {
324                  FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
325 <                for (pn = ray_nprocs; pn--; ) {
325 >                for (pn = ray_pnprocs; pn--; ) {
326                          if (r_proc[pn].npending > 0)
327                                  FD_SET(r_proc[pn].fd_recv, &readset);
328                          FD_SET(r_proc[pn].fd_recv, &errset);
# Line 393 | Line 358 | getready:                              /* any children waiting for us? */
358          if (n <= 0)
359                  FD_CLR(r_proc[pn].fd_recv, &errset);
360          r_proc[pn].npending = 0;
361 <        ray_idle++;
361 >        ray_pnidle++;
362                                          /* check for rendering errors */
363          if (!ok) {
364                  ray_pclose(0);          /* process died -- clean up */
# Line 409 | Line 374 | getready:                              /* any children waiting for us? */
374                  rp->slights = NULL;
375          }
376                                          /* return first ray received */
377 <        copystruct(r, &r_queue[r_recv_first]);
413 <        r_recv_first++;
377 >        *r = r_queue[r_recv_first++];
378          return(1);
379   }
380  
381  
382 < void
383 < ray_pdone(freall)               /* reap children and free data */
384 < int     freall;
382 > extern void
383 > ray_pdone(              /* reap children and free data */
384 >        int     freall
385 > )
386   {
387          ray_pclose(0);                  /* close child processes */
388  
# Line 430 | Line 395 | int    freall;
395  
396  
397   static void
398 < ray_pchild(fd_in, fd_out)       /* process rays (never returns) */
399 < int     fd_in;
400 < int     fd_out;
398 > ray_pchild(     /* process rays (never returns) */
399 >        int     fd_in,
400 >        int     fd_out
401 > )
402   {
403          int     n;
404          register int    i;
405 +                                        /* flag child process for quit() */
406 +        ray_pnprocs = -1;
407                                          /* read each ray request set */
408          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
409                  int     n2;
410 <                if (n % sizeof(RAY))
410 >                if (n < sizeof(RAY))
411                          break;
444                n /= sizeof(RAY);
412                                          /* get smuggled set length */
413 <                n2 = r_queue[0].crtype - n;
413 >                n2 = sizeof(RAY)*r_queue[0].crtype - n;
414                  if (n2 < 0)
415                          error(INTERNAL, "buffer over-read in ray_pchild");
416                  if (n2 > 0) {           /* read the rest of the set */
417 <                        i = readbuf(fd_in, (char *)(r_queue+n),
418 <                                        sizeof(RAY)*n2);
452 <                        if (i != sizeof(RAY)*n2)
417 >                        i = readbuf(fd_in, (char *)r_queue + n, n2);
418 >                        if (i != n2)
419                                  break;
420                          n += n2;
421                  }
422 +                n /= sizeof(RAY);
423                                          /* evaluate rays */
424                  for (i = 0; i < n; i++) {
425                          r_queue[i].crtype = r_queue[i].rtype;
426                          r_queue[i].parent = NULL;
427                          r_queue[i].clipset = NULL;
428                          r_queue[i].slights = NULL;
462                        r_queue[i].revf = raytrace;
429                          samplendx++;
430                          rayclear(&r_queue[i]);
431                          rayvalue(&r_queue[i]);
# Line 476 | Line 442 | int    fd_out;
442   }
443  
444  
445 < void
446 < ray_popen(nadd)                 /* open the specified # processes */
447 < int     nadd;
445 > extern void
446 > ray_popen(                      /* open the specified # processes */
447 >        int     nadd
448 > )
449   {
450                                          /* check if our table has room */
451 <        if (ray_nprocs + nadd > MAX_NPROCS)
452 <                nadd = MAX_NPROCS - ray_nprocs;
451 >        if (ray_pnprocs + nadd > MAX_NPROCS)
452 >                nadd = MAX_NPROCS - ray_pnprocs;
453          if (nadd <= 0)
454                  return;
455 <        fflush(stderr);                 /* clear pending output */
456 <        fflush(stdout);
455 >        ambsync();                      /* load any new ambient values */
456 >        fflush(NULL);                   /* clear pending output */
457          while (nadd--) {                /* fork each new process */
458                  int     p0[2], p1[2];
459                  if (pipe(p0) < 0 || pipe(p1) < 0)
460                          error(SYSTEM, "cannot create pipe");
461 <                if ((r_proc[ray_nprocs].pid = fork()) == 0) {
461 >                if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
462                          int     pn;     /* close others' descriptors */
463 <                        for (pn = ray_nprocs; pn--; ) {
463 >                        for (pn = ray_pnprocs; pn--; ) {
464                                  close(r_proc[pn].fd_send);
465                                  close(r_proc[pn].fd_recv);
466                          }
# Line 501 | Line 468 | int    nadd;
468                                          /* following call never returns */
469                          ray_pchild(p1[0], p0[1]);
470                  }
471 <                if (r_proc[ray_nprocs].pid < 0)
471 >                if (r_proc[ray_pnprocs].pid < 0)
472                          error(SYSTEM, "cannot fork child process");
473                  close(p1[0]); close(p0[1]);
474 <                r_proc[ray_nprocs].fd_send = p1[1];
475 <                r_proc[ray_nprocs].fd_recv = p0[0];
476 <                r_proc[ray_nprocs].npending = 0;
477 <                ray_nprocs++;
478 <                ray_idle++;
474 >                /*
475 >                 * Close write stream on exec to avoid multiprocessing deadlock.
476 >                 * No use in read stream without it, so set flag there as well.
477 >                 */
478 >                fcntl(p1[1], F_SETFD, FD_CLOEXEC);
479 >                fcntl(p0[0], F_SETFD, FD_CLOEXEC);
480 >                r_proc[ray_pnprocs].fd_send = p1[1];
481 >                r_proc[ray_pnprocs].fd_recv = p0[0];
482 >                r_proc[ray_pnprocs].npending = 0;
483 >                ray_pnprocs++;
484 >                ray_pnidle++;
485          }
486   }
487  
488  
489 < void
490 < ray_pclose(nsub)                /* close one or more child processes */
491 < int     nsub;
489 > extern void
490 > ray_pclose(             /* close one or more child processes */
491 >        int     nsub
492 > )
493   {
494          static int      inclose = 0;
495          RAY     res;
# Line 524 | Line 498 | int    nsub;
498                  return;
499          inclose++;
500                                          /* check argument */
501 <        if ((nsub <= 0 | nsub > ray_nprocs))
502 <                nsub = ray_nprocs;
501 >        if ((nsub <= 0) | (nsub > ray_pnprocs))
502 >                nsub = ray_pnprocs;
503                                          /* clear our ray queue */
504          while (ray_presult(&res,0) > 0)
505                  ;
506                                          /* clean up children */
507          while (nsub--) {
508                  int     status;
509 <                ray_nprocs--;
510 <                close(r_proc[ray_nprocs].fd_recv);
511 <                close(r_proc[ray_nprocs].fd_send);
512 <                while (wait(&status) != r_proc[ray_nprocs].pid)
513 <                        ;
509 >                ray_pnprocs--;
510 >                close(r_proc[ray_pnprocs].fd_recv);
511 >                close(r_proc[ray_pnprocs].fd_send);
512 >                if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
513 >                        status = 127<<8;
514                  if (status) {
515                          sprintf(errmsg,
516                                  "rendering process %d exited with code %d",
517 <                                        r_proc[ray_nprocs].pid, status>>8);
517 >                                        r_proc[ray_pnprocs].pid, status>>8);
518                          error(WARNING, errmsg);
519                  }
520 <                ray_idle--;
520 >                ray_pnidle--;
521          }
522          inclose--;
523   }
# Line 553 | Line 527 | void
527   quit(ec)                        /* make sure exit is called */
528   int     ec;
529   {
530 +        if (ray_pnprocs > 0)    /* close children if any */
531 +                ray_pclose(0);          
532          exit(ec);
533   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines