1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: raypcalls.c,v 2.38 2024/04/30 22:25:46 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* raypcalls.c - interface for parallel rendering using Radiance |
6 |
* |
7 |
* External symbols declared in ray.h |
8 |
*/ |
9 |
|
10 |
#include "copyright.h" |
11 |
|
12 |
/* |
13 |
* These calls are designed similarly to the ones in raycalls.c, |
14 |
* but allow for multiple rendering processes on the same host |
15 |
* machine. There is no sense in specifying more child processes |
16 |
* than you have processor cores, but one child may help by allowing |
17 |
* asynchronous ray computation in an interactive program, and |
18 |
* will protect the caller from fatal rendering errors. |
19 |
* |
20 |
* You should first read and understand the header in raycalls.c, |
21 |
* as some things are explained there that are not repated here. |
22 |
* |
23 |
* The first step is opening one or more rendering processes |
24 |
* with a call to ray_pinit(oct, nproc). Before calling fork(), |
25 |
* ray_pinit() loads the octree and data structures into the |
26 |
* caller's memory, and ray_popen() synchronizes the ambient |
27 |
* file, if any. Shared memory permits all sorts of queries |
28 |
* that wouldn't be possible otherwise without causing any real |
29 |
* memory overhead, since all the static data are shared |
30 |
* between processes. Rays are traced using a simple |
31 |
* queuing mechanism, explained below. |
32 |
* |
33 |
* The ray queue buffers RAYQLEN rays before sending to |
34 |
* children, each of which may internally buffer RAYQLEN rays |
35 |
* during evaluation. Rays are not returned in the order |
36 |
* they are sent when multiple processes are open. |
37 |
* |
38 |
* Rays are queued and returned by a single |
39 |
* ray_pqueue() call. A ray_pqueue() return |
40 |
* value of 0 indicates that no rays are ready |
41 |
* and the queue is not yet full. A return value of 1 |
42 |
* indicates that a ray was returned, though it is probably |
43 |
* not the one you just requested. Rays may be identified by |
44 |
* the rno member of the RAY struct, which is incremented |
45 |
* by the rayorigin() call, or may be set explicitly by |
46 |
* the caller. Below is an example call sequence: |
47 |
* |
48 |
* myRay.rorg = ( ray origin point ) |
49 |
* myRay.rdir = ( normalized ray direction ) |
50 |
* myRay.rmax = ( maximum length, or zero for no limit ) |
51 |
* rayorigin(&myRay, PRIMARY, NULL, NULL); |
52 |
* myRay.rno = ( my personal ray identifier ) |
53 |
* if (ray_pqueue(&myRay) == 1) |
54 |
* { do something with results } |
55 |
* |
56 |
* Note the differences between this and the simpler ray_trace() |
57 |
* call. In particular, the call may or may not return a value |
58 |
* in the passed ray structure. Also, you need to call rayorigin() |
59 |
* yourself, which is normally called for you by ray_trace(). The |
60 |
* benefit is that ray_pqueue() will trace rays faster in |
61 |
* proportion to the number of CPUs you have available on your |
62 |
* system. If the ray queue is full before the call, ray_pqueue() |
63 |
* will block until a result is ready so it can queue this one. |
64 |
* The global int ray_pnidle indicates the number of currently idle |
65 |
* children. If you want to check for completed rays without blocking, |
66 |
* or get the results from rays that have been queued without |
67 |
* queuing any new ones, the ray_presult() call is for you: |
68 |
* |
69 |
* if (ray_presult(&myRay, 1) == 1) |
70 |
* { do something with results } |
71 |
* |
72 |
* If the second argument is 1, the call won't block when |
73 |
* results aren't ready, but will immediately return 0. |
74 |
* If the second argument is 0, the call will block |
75 |
* until a value is available, returning 0 only if the |
76 |
* queue is completely empty. Setting the second argument |
77 |
* to -1 returns 0 unless a ray is ready in the queue and |
78 |
* no system calls are needed. A negative return value |
79 |
* indicates that a rendering process died. If this |
80 |
* happens, ray_pclose(0) is automatically called to close |
81 |
* all child processes, and ray_pnprocs is set to zero. |
82 |
* |
83 |
* If you just want to fill the ray queue without checking for |
84 |
* results, check ray_pnidle and call ray_psend(): |
85 |
* |
86 |
* while (ray_pnidle) { |
87 |
* ( set up ray ) |
88 |
* ray_psend(&myRay); |
89 |
* } |
90 |
* |
91 |
* Note that it is a mistake to call ra_psend() when |
92 |
* ray_pnidle is zero, and nothing will be sent in |
93 |
* this case. Otherwise, the ray_presult() and/or ray_pqueue() |
94 |
* functions may be called subsequently to read back the results |
95 |
* of rays queued by ray_psend(). |
96 |
* |
97 |
* When you are done, you may call ray_pdone(1) to close |
98 |
* all child processes and clean up memory used by Radiance. |
99 |
* Any queued ray calculations will be awaited and discarded. |
100 |
* As with ray_done(), ray_pdone(0) hangs onto data files |
101 |
* and fonts that are likely to be used in subsequent renderings. |
102 |
* Whether you need to clean up memory or not, you should |
103 |
* at least call ray_pclose(0) to await the child processes. |
104 |
* The caller should define a quit() function that calls |
105 |
* ray_pclose(0) if ray_pnprocs > 0. |
106 |
* |
107 |
* Warning: You cannot affect any of the rendering processes |
108 |
* by changing global parameter values onece ray_pinit() has |
109 |
* been called. Changing global parameters will have no effect |
110 |
* until the next call to ray_pinit(), which restarts everything. |
111 |
* If you just want to reap children so that you can alter the |
112 |
* rendering parameters without reloading the scene, use the |
113 |
* ray_pclose(0) and ray_popen(nproc) calls to close |
114 |
* then restart the child processes after the changes are made. |
115 |
* |
116 |
* Note: These routines are written to coordinate with the |
117 |
* definitions in raycalls.c, and in fact depend on them. |
118 |
* If you want to trace a ray and get a result synchronously, |
119 |
* use the ray_trace() call to compute it in the parent process. |
120 |
* This will not interfere with any subprocess calculations, |
121 |
* but beware that a fatal error may end with a call to quit(). |
122 |
* |
123 |
* Note: One of the advantages of using separate processes |
124 |
* is that it gives the calling program some immunity from |
125 |
* fatal rendering errors. As discussed in raycalls.c, |
126 |
* Radiance tends to throw up its hands and exit at the |
127 |
* first sign of trouble, calling quit() to return control |
128 |
* to the top level. Although you can avoid exit() with |
129 |
* your own longjmp() in quit(), the cleanup afterwards |
130 |
* is always suspect. Through the use of subprocesses, |
131 |
* we avoid this pitfall by closing the processes and |
132 |
* returning a negative value from ray_pqueue() or |
133 |
* ray_presult(). If you get a negative value from either |
134 |
* of these calls, you can assume that the processes have |
135 |
* been cleaned up with a call to ray_pclose(), though you |
136 |
* will have to call ray_pdone() yourself if you want to |
137 |
* free memory. Obviously, you cannot continue rendering |
138 |
* without risking further errors, but otherwise your |
139 |
* process should not be compromised. |
140 |
*/ |
141 |
|
142 |
#include "rtprocess.h" |
143 |
#include "ray.h" |
144 |
#include "ambient.h" |
145 |
#include <sys/types.h> |
146 |
#include <sys/wait.h> |
147 |
#include "selcall.h" |
148 |
|
149 |
#ifndef RAYQLEN |
150 |
#define RAYQLEN 24 /* # rays to send at once */ |
151 |
#endif |
152 |
|
153 |
#ifndef MAX_RPROCS |
154 |
#if (FD_SETSIZE/2-4 < 64) |
155 |
#define MAX_NPROCS (FD_SETSIZE/2-4) |
156 |
#else |
157 |
#define MAX_NPROCS 64 /* max. # rendering processes */ |
158 |
#endif |
159 |
#endif |
160 |
|
161 |
extern char *shm_boundary; /* boundary of shared memory */ |
162 |
|
163 |
int ray_pnprocs = 0; /* number of child processes */ |
164 |
int ray_pnidle = 0; /* number of idle children */ |
165 |
|
166 |
static struct child_proc { |
167 |
RT_PID pid; /* child process id */ |
168 |
int fd_send; /* write to child here */ |
169 |
int fd_recv; /* read from child here */ |
170 |
int npending; /* # rays in process */ |
171 |
RNUMBER rno[RAYQLEN]; /* working on these rays */ |
172 |
} r_proc[MAX_NPROCS]; /* our child processes */ |
173 |
|
174 |
static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */ |
175 |
static int r_send_next = 0; /* next send ray placement */ |
176 |
static int r_recv_first = RAYQLEN; /* position of first unreported ray */ |
177 |
static int r_recv_next = RAYQLEN; /* next received ray placement */ |
178 |
|
179 |
static int samplestep = 1; /* sample step size */ |
180 |
|
181 |
#define sendq_full() (r_send_next >= RAYQLEN) |
182 |
|
183 |
static int ray_pflush(void); |
184 |
static void ray_pchild(int fd_in, int fd_out); |
185 |
|
186 |
|
187 |
void |
188 |
ray_pinit( /* initialize ray-tracing processes */ |
189 |
char *otnm, |
190 |
int nproc |
191 |
) |
192 |
{ |
193 |
if (nobjects > 0) /* close old calculation */ |
194 |
ray_pdone(0); |
195 |
|
196 |
ray_init(otnm); /* load the shared scene */ |
197 |
|
198 |
ray_popen(nproc); /* fork children */ |
199 |
} |
200 |
|
201 |
|
202 |
static int |
203 |
ray_pflush(void) /* send queued rays to idle children */ |
204 |
{ |
205 |
int nc, n, nw, i, sfirst; |
206 |
|
207 |
if ((ray_pnidle <= 0) | (r_send_next <= 0)) |
208 |
return(0); /* nothing we can send */ |
209 |
|
210 |
sfirst = 0; /* divvy up labor */ |
211 |
nc = ray_pnidle; |
212 |
for (i = ray_pnprocs; nc && i--; ) { |
213 |
if (r_proc[i].npending > 0) |
214 |
continue; /* child looks busy */ |
215 |
n = (r_send_next - sfirst) / nc--; |
216 |
if (!n) |
217 |
continue; |
218 |
/* smuggle set size in crtype */ |
219 |
r_queue[sfirst].crtype = n; |
220 |
nw = writebuf(r_proc[i].fd_send, &r_queue[sfirst], |
221 |
sizeof(RAY)*n); |
222 |
if (nw != sizeof(RAY)*n) |
223 |
return(-1); /* write error */ |
224 |
r_proc[i].npending = n; |
225 |
while (n--) /* record ray IDs */ |
226 |
r_proc[i].rno[n] = r_queue[sfirst+n].rno; |
227 |
sfirst += r_proc[i].npending; |
228 |
ray_pnidle--; /* now she's busy */ |
229 |
} |
230 |
if (sfirst != r_send_next) |
231 |
error(CONSISTENCY, "code screwup in ray_pflush()"); |
232 |
r_send_next = 0; |
233 |
return(sfirst); /* return total # sent */ |
234 |
} |
235 |
|
236 |
|
237 |
int |
238 |
ray_psend( /* add a ray to our send queue */ |
239 |
RAY *r |
240 |
) |
241 |
{ |
242 |
int rv; |
243 |
|
244 |
if ((r == NULL) | (ray_pnidle <= 0)) |
245 |
return(0); |
246 |
/* flush output if necessary */ |
247 |
if (sendq_full() && (rv = ray_pflush()) <= 0) |
248 |
return(rv); |
249 |
|
250 |
r_queue[r_send_next++] = *r; |
251 |
return(1); |
252 |
} |
253 |
|
254 |
|
255 |
int |
256 |
ray_pqueue( /* queue a ray for computation */ |
257 |
RAY *r |
258 |
) |
259 |
{ |
260 |
if (r == NULL) |
261 |
return(0); |
262 |
/* check for full send queue */ |
263 |
if (sendq_full()) { |
264 |
RAY mySend = *r; |
265 |
/* wait for a result */ |
266 |
if (ray_presult(r, 0) <= 0) |
267 |
return(-1); |
268 |
/* put new ray in queue */ |
269 |
r_queue[r_send_next++] = mySend; |
270 |
|
271 |
return(1); |
272 |
} |
273 |
/* else add ray to send queue */ |
274 |
r_queue[r_send_next++] = *r; |
275 |
/* check for returned ray... */ |
276 |
if (r_recv_first >= r_recv_next) |
277 |
return(0); |
278 |
/* ...one is sitting in queue */ |
279 |
*r = r_queue[r_recv_first++]; |
280 |
return(1); |
281 |
} |
282 |
|
283 |
|
284 |
int |
285 |
ray_presult( /* check for a completed ray */ |
286 |
RAY *r, |
287 |
int poll |
288 |
) |
289 |
{ |
290 |
static struct timeval tpoll; /* zero timeval struct */ |
291 |
static fd_set readset, errset; |
292 |
int n, ok; |
293 |
int pn; |
294 |
|
295 |
if (r == NULL) |
296 |
return(0); |
297 |
/* check queued results first */ |
298 |
if (r_recv_first < r_recv_next) { |
299 |
*r = r_queue[r_recv_first++]; |
300 |
return(1); |
301 |
} |
302 |
if (poll < 0) /* immediate polling mode? */ |
303 |
return(0); |
304 |
|
305 |
n = ray_pnprocs - ray_pnidle; /* pending before flush? */ |
306 |
|
307 |
if (ray_pflush() < 0) /* send new rays to process */ |
308 |
return(-1); |
309 |
/* reset receive queue */ |
310 |
r_recv_first = r_recv_next = RAYQLEN; |
311 |
|
312 |
if (!poll) /* count newly sent unless polling */ |
313 |
n = ray_pnprocs - ray_pnidle; |
314 |
if (n <= 0) /* return if nothing to await */ |
315 |
return(0); |
316 |
if (!poll && ray_pnprocs == 1) /* one process -> skip select() */ |
317 |
FD_SET(r_proc[0].fd_recv, &readset); |
318 |
|
319 |
getready: /* any children waiting for us? */ |
320 |
for (pn = ray_pnprocs; pn--; ) |
321 |
if (FD_ISSET(r_proc[pn].fd_recv, &readset) || |
322 |
FD_ISSET(r_proc[pn].fd_recv, &errset)) |
323 |
break; |
324 |
/* call select() if we must */ |
325 |
if (pn < 0) { |
326 |
FD_ZERO(&readset); FD_ZERO(&errset); n = 0; |
327 |
for (pn = ray_pnprocs; pn--; ) { |
328 |
if (r_proc[pn].npending > 0) |
329 |
FD_SET(r_proc[pn].fd_recv, &readset); |
330 |
FD_SET(r_proc[pn].fd_recv, &errset); |
331 |
if (r_proc[pn].fd_recv >= n) |
332 |
n = r_proc[pn].fd_recv + 1; |
333 |
} |
334 |
/* find out who is ready */ |
335 |
while ((n = select(n, &readset, (fd_set *)NULL, &errset, |
336 |
poll ? &tpoll : (struct timeval *)NULL)) < 0) |
337 |
if (errno != EINTR) { |
338 |
error(WARNING, |
339 |
"select call failed in ray_presult()"); |
340 |
ray_pclose(0); |
341 |
return(-1); |
342 |
} |
343 |
if (n > 0) /* go back and get it */ |
344 |
goto getready; |
345 |
return(0); /* else poll came up empty */ |
346 |
} |
347 |
if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY)) |
348 |
error(CONSISTENCY, "buffer shortage in ray_presult()"); |
349 |
|
350 |
/* read rendered ray data */ |
351 |
n = readbuf(r_proc[pn].fd_recv, &r_queue[r_recv_next], |
352 |
sizeof(RAY)*r_proc[pn].npending); |
353 |
if (n > 0) { |
354 |
r_recv_next += n/sizeof(RAY); |
355 |
ok = (n == sizeof(RAY)*r_proc[pn].npending); |
356 |
} else |
357 |
ok = 0; |
358 |
/* reset child's status */ |
359 |
FD_CLR(r_proc[pn].fd_recv, &readset); |
360 |
if (n <= 0) |
361 |
FD_CLR(r_proc[pn].fd_recv, &errset); |
362 |
r_proc[pn].npending = 0; |
363 |
ray_pnidle++; |
364 |
/* check for rendering errors */ |
365 |
if (!ok) { |
366 |
ray_pclose(0); /* process died -- clean up */ |
367 |
return(-1); |
368 |
} |
369 |
/* preen returned rays */ |
370 |
for (n = r_recv_next - r_recv_first; n--; ) { |
371 |
RAY *rp = &r_queue[r_recv_first + n]; |
372 |
rp->rno = r_proc[pn].rno[n]; |
373 |
rp->parent = NULL; |
374 |
rp->newcset = rp->clipset = NULL; |
375 |
rp->rox = NULL; |
376 |
rp->slights = NULL; |
377 |
} |
378 |
/* return first ray received */ |
379 |
*r = r_queue[r_recv_first++]; |
380 |
return(1); |
381 |
} |
382 |
|
383 |
|
384 |
void |
385 |
ray_pdone( /* reap children and free data */ |
386 |
int freall |
387 |
) |
388 |
{ |
389 |
ray_pclose(0); /* close child processes */ |
390 |
|
391 |
if (shm_boundary != NULL) { /* clear shared memory boundary */ |
392 |
free((void *)shm_boundary); |
393 |
shm_boundary = NULL; |
394 |
} |
395 |
|
396 |
ray_done(freall); /* free rendering data */ |
397 |
} |
398 |
|
399 |
|
400 |
static void |
401 |
ray_pchild( /* process rays (never returns) */ |
402 |
int fd_in, |
403 |
int fd_out |
404 |
) |
405 |
{ |
406 |
int n; |
407 |
int i; |
408 |
/* flag child process for quit() */ |
409 |
ray_pnprocs = -1; |
410 |
/* read each ray request set */ |
411 |
while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) { |
412 |
int n2; |
413 |
if (n < sizeof(RAY)) |
414 |
break; |
415 |
/* get smuggled set length */ |
416 |
n2 = sizeof(RAY)*r_queue[0].crtype - n; |
417 |
if (n2 < 0) |
418 |
error(INTERNAL, "buffer over-read in ray_pchild()"); |
419 |
if (n2 > 0) { /* read the rest of the set */ |
420 |
i = readbuf(fd_in, (char *)r_queue + n, n2); |
421 |
if (i != n2) |
422 |
break; |
423 |
n += n2; |
424 |
} |
425 |
n /= sizeof(RAY); |
426 |
/* evaluate rays */ |
427 |
for (i = 0; i < n; i++) { |
428 |
r_queue[i].crtype = r_queue[i].rtype; |
429 |
r_queue[i].parent = NULL; |
430 |
r_queue[i].clipset = NULL; |
431 |
r_queue[i].slights = NULL; |
432 |
r_queue[i].rlvl = 0; |
433 |
samplendx += samplestep; |
434 |
rayclear(&r_queue[i]); |
435 |
rayvalue(&r_queue[i]); |
436 |
} |
437 |
/* write back our results */ |
438 |
i = writebuf(fd_out, r_queue, sizeof(RAY)*n); |
439 |
if (i != sizeof(RAY)*n) |
440 |
error(SYSTEM, "write error in ray_pchild()"); |
441 |
} |
442 |
if (n) |
443 |
error(SYSTEM, "read error in ray_pchild()"); |
444 |
ambsync(); |
445 |
quit(0); /* normal exit */ |
446 |
} |
447 |
|
448 |
|
449 |
void |
450 |
ray_popen( /* open the specified # processes */ |
451 |
int nadd |
452 |
) |
453 |
{ |
454 |
/* check if our table has room */ |
455 |
if (ray_pnprocs + nadd > MAX_NPROCS) |
456 |
nadd = MAX_NPROCS - ray_pnprocs; |
457 |
if (nadd <= 0) |
458 |
return; |
459 |
if (nobjects <= 0) |
460 |
error(CONSISTENCY, "ray_popen() called before scene loaded"); |
461 |
ambsync(); /* load any new ambient values */ |
462 |
if (shm_boundary == NULL) { /* first child process? */ |
463 |
preload_objs(); /* preload auxiliary data */ |
464 |
/* set shared memory boundary */ |
465 |
shm_boundary = (char *)malloc(16); |
466 |
strcpy(shm_boundary, "SHM_BOUNDARY"); |
467 |
} |
468 |
fflush(NULL); /* clear pending output */ |
469 |
samplestep = ray_pnprocs + nadd; |
470 |
while (nadd--) { /* fork each new process */ |
471 |
int p0[2], p1[2]; |
472 |
if (pipe(p0) < 0 || pipe(p1) < 0) |
473 |
error(SYSTEM, "cannot create pipe"); |
474 |
if ((r_proc[ray_pnprocs].pid = fork()) == 0) { |
475 |
int pn; /* close others' descriptors */ |
476 |
for (pn = ray_pnprocs; pn--; ) { |
477 |
close(r_proc[pn].fd_send); |
478 |
close(r_proc[pn].fd_recv); |
479 |
} |
480 |
close(p0[0]); close(p1[1]); |
481 |
close(0); /* don't share stdin */ |
482 |
/* following call never returns */ |
483 |
ray_pchild(p1[0], p0[1]); |
484 |
} |
485 |
if (r_proc[ray_pnprocs].pid < 0) |
486 |
error(SYSTEM, "cannot fork child process"); |
487 |
close(p1[0]); close(p0[1]); |
488 |
if (rand_samp) /* decorrelate random sequence */ |
489 |
srandom(random()); |
490 |
else |
491 |
samplendx++; |
492 |
/* |
493 |
* Close write stream on exec to avoid multiprocessing deadlock. |
494 |
* No use in read stream without it, so set flag there as well. |
495 |
*/ |
496 |
fcntl(p1[1], F_SETFD, FD_CLOEXEC); |
497 |
fcntl(p0[0], F_SETFD, FD_CLOEXEC); |
498 |
r_proc[ray_pnprocs].fd_send = p1[1]; |
499 |
r_proc[ray_pnprocs].fd_recv = p0[0]; |
500 |
r_proc[ray_pnprocs].npending = 0; |
501 |
ray_pnprocs++; |
502 |
ray_pnidle++; |
503 |
} |
504 |
} |
505 |
|
506 |
|
507 |
void |
508 |
ray_pclose( /* close one or more child processes */ |
509 |
int nsub |
510 |
) |
511 |
{ |
512 |
static int inclose = 0; |
513 |
RAY res; |
514 |
int i, status = 0; |
515 |
/* check no child / in child */ |
516 |
if (ray_pnprocs <= 0) |
517 |
return; |
518 |
/* check recursion */ |
519 |
if (inclose) |
520 |
return; |
521 |
inclose++; |
522 |
/* check argument */ |
523 |
if ((nsub <= 0) | (nsub > ray_pnprocs)) |
524 |
nsub = ray_pnprocs; |
525 |
/* clear our ray queue */ |
526 |
i = r_send_next; |
527 |
r_send_next = 0; |
528 |
while (ray_presult(&res,0) > 0) |
529 |
++i; |
530 |
if (i) { |
531 |
sprintf(errmsg, "dropped %d rays in ray_pclose()", i); |
532 |
error(WARNING, errmsg); |
533 |
} |
534 |
r_recv_first = r_recv_next = RAYQLEN; |
535 |
/* close send pipes */ |
536 |
for (i = ray_pnprocs-nsub; i < ray_pnprocs; i++) |
537 |
close(r_proc[i].fd_send); |
538 |
|
539 |
if (nsub == 1) { /* awaiting single process? */ |
540 |
if (waitpid(r_proc[ray_pnprocs-1].pid, &status, 0) < 0) |
541 |
status = 127<<8; |
542 |
close(r_proc[ray_pnprocs-1].fd_recv); |
543 |
} else /* else unordered wait */ |
544 |
for (i = 0; i < nsub; ) { |
545 |
int j, mystatus; |
546 |
RT_PID pid = wait(&mystatus); |
547 |
if (pid < 0) { |
548 |
status = 127<<8; |
549 |
break; |
550 |
} |
551 |
for (j = ray_pnprocs-nsub; j < ray_pnprocs; j++) |
552 |
if (r_proc[j].pid == pid) { |
553 |
if (mystatus) |
554 |
status = mystatus; |
555 |
close(r_proc[j].fd_recv); |
556 |
++i; |
557 |
} |
558 |
} |
559 |
ray_pnprocs -= nsub; |
560 |
ray_pnidle -= nsub; |
561 |
if (status) { |
562 |
sprintf(errmsg, "rendering process exited with code %d", status>>8); |
563 |
error(WARNING, errmsg); |
564 |
} |
565 |
inclose--; |
566 |
} |