ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.14
Committed: Wed Dec 21 17:36:06 2005 UTC (18 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R8
Changes since 2.13: +9 -13 lines
Log Message:
Minor cosmetic changes

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: raypcalls.c,v 2.13 2005/12/20 20:36:44 greg Exp $";
3 #endif
4 /*
5 * raypcalls.c - interface for parallel rendering using Radiance
6 *
7 * External symbols declared in ray.h
8 */
9
10 #include "copyright.h"
11
12 /*
13 * These calls are designed similarly to the ones in raycalls.c,
14 * but allow for multiple rendering processes on the same host
15 * machine. There is no sense in specifying more child processes
16 * than you have processors, but one child may help by allowing
17 * asynchronous ray computation in an interactive program, and
18 * will protect the caller from fatal rendering errors.
19 *
20 * You should first read and undrstand the header in raycalls.c,
21 * as some things are explained there that are not repated here.
22 *
23 * The first step is opening one or more rendering processes
24 * with a call to ray_pinit(oct, nproc). Before calling fork(),
25 * ray_pinit() loads the octree and data structures into the
26 * caller's memory, and ray_popen() synchronizes the ambient
27 * file, if any. Shared memory permits all sorts of queries
28 * that wouldn't be possible otherwise, without causing any real
29 * memory overhead, since all the static data are shared
30 * between processes. Rays are then traced using a simple
31 * queuing mechanism, explained below.
32 *
33 * The ray queue buffers RAYQLEN rays before sending to
34 * children, each of which may internally buffer RAYQLEN rays.
35 *
36 * Rays are queued and returned by a single
37 * ray_pqueue() call. A ray_pqueue() return
38 * value of 0 indicates that no rays are ready
39 * and the queue is not yet full. A return value of 1
40 * indicates that a ray was returned, though it is probably
41 * not the one you just requested. Rays may be identified by
42 * the rno member of the RAY struct, which is incremented
43 * by the rayorigin() call, or may be set explicitly by
44 * the caller. Below is an example call sequence:
45 *
46 * myRay.rorg = ( ray origin point )
47 * myRay.rdir = ( normalized ray direction )
48 * myRay.rmax = ( maximum length, or zero for no limit )
49 * rayorigin(&myRay, PRIMARY, NULL, NULL);
50 * myRay.rno = ( my personal ray identifier )
51 * if (ray_pqueue(&myRay) == 1)
52 * { do something with results }
53 *
54 * Note the differences between this and the simpler ray_trace()
55 * call. In particular, the call may or may not return a value
56 * in the passed ray structure. Also, you need to call rayorigin()
57 * yourself, which is normally called for you by ray_trace(). The
58 * benefit is that ray_pqueue() will trace rays faster in
59 * proportion to the number of CPUs you have available on your
60 * system. If the ray queue is full before the call, ray_pqueue()
61 * will block until a result is ready so it can queue this one.
62 * The global int ray_pnidle indicates the number of currently idle
63 * children. If you want to check for completed rays without blocking,
64 * or get the results from rays that have been queued without
65 * queuing any new ones, the ray_presult() call is for you:
66 *
67 * if (ray_presult(&myRay, 1) == 1)
68 * { do something with results }
69 *
70 * If the second argument is 1, the call won't block when
71 * results aren't ready, but will immediately return 0.
72 * If the second argument is 0, the call will block
73 * until a value is available, returning 0 only if the
74 * queue is completely empty. A negative return value
75 * indicates that a rendering process died. If this
76 * happens, ray_close(0) is automatically called to close
77 * all child processes, and ray_pnprocs is set to zero.
78 *
79 * If you just want to fill the ray queue without checking for
80 * results, check ray_pnidle and call ray_psend():
81 *
82 * while (ray_pnidle) {
83 * ( set up ray )
84 * ray_psend(&myRay);
85 * }
86 *
87 * Note that it is a fatal error to call ra_psend() when
88 * ray_pnidle is zero. The ray_presult() and/or ray_pqueue()
89 * functions may be called subsequently to read back the results.
90 *
91 * When you are done, you may call ray_pdone(1) to close
92 * all child processes and clean up memory used by Radiance.
93 * Any queued ray calculations will be awaited and discarded.
94 * As with ray_done(), ray_pdone(0) hangs onto data files
95 * and fonts that are likely to be used in subsequent renderings.
96 * Whether you want to bother cleaning up memory or not, you
97 * should at least call ray_pclose(0) to clean the child processes.
98 *
99 * Warning: You cannot affect any of the rendering processes
100 * by changing global parameter values onece ray_pinit() has
101 * been called. Changing global parameters will have no effect
102 * until the next call to ray_pinit(), which restarts everything.
103 * If you just want to reap children so that you can alter the
104 * rendering parameters without reloading the scene, use the
105 * ray_pclose(0) and ray_popen(nproc) calls to close
106 * then restart the child processes after the changes are made.
107 *
108 * Note: These routines are written to coordinate with the
109 * definitions in raycalls.c, and in fact depend on them.
110 * If you want to trace a ray and get a result synchronously,
111 * use the ray_trace() call to compute it in the parent process.
112 * This will not interfere with any subprocess calculations,
113 * but beware that a fatal error may end with a call to quit().
114 *
115 * Note: One of the advantages of using separate processes
116 * is that it gives the calling program some immunity from
117 * fatal rendering errors. As discussed in raycalls.c,
118 * Radiance tends to throw up its hands and exit at the
119 * first sign of trouble, calling quit() to return control
120 * to the top level. Although you can avoid exit() with
121 * your own longjmp() in quit(), the cleanup afterwards
122 * is always suspect. Through the use of subprocesses,
123 * we avoid this pitfall by closing the processes and
124 * returning a negative value from ray_pqueue() or
125 * ray_presult(). If you get a negative value from either
126 * of these calls, you can assume that the processes have
127 * been cleaned up with a call to ray_close(), though you
128 * will have to call ray_pdone() yourself if you want to
129 * free memory. Obviously, you cannot continue rendering
130 * without risking further errors, but otherwise your
131 * process should not be compromised.
132 */
133
134 #include <stdio.h>
135 #include <sys/types.h>
136 #include <sys/wait.h> /* XXX platform */
137
138 #include "rtprocess.h"
139 #include "ray.h"
140 #include "ambient.h"
141 #include "selcall.h"
142
143 #ifndef RAYQLEN
144 #define RAYQLEN 12 /* # rays to send at once */
145 #endif
146
147 #ifndef MAX_RPROCS
148 #if (FD_SETSIZE/2-4 < 64)
149 #define MAX_NPROCS (FD_SETSIZE/2-4)
150 #else
151 #define MAX_NPROCS 64 /* max. # rendering processes */
152 #endif
153 #endif
154
155 extern char *shm_boundary; /* boundary of shared memory */
156
157 int ray_pnprocs = 0; /* number of child processes */
158 int ray_pnidle = 0; /* number of idle children */
159
160 static struct child_proc {
161 int pid; /* child process id */
162 int fd_send; /* write to child here */
163 int fd_recv; /* read from child here */
164 int npending; /* # rays in process */
165 unsigned long rno[RAYQLEN]; /* working on these rays */
166 } r_proc[MAX_NPROCS]; /* our child processes */
167
168 static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
169 static int r_send_next; /* next send ray placement */
170 static int r_recv_first; /* position of first unreported ray */
171 static int r_recv_next; /* next receive ray placement */
172
173 #define sendq_full() (r_send_next >= RAYQLEN)
174
175 static int ray_pflush(void);
176 static void ray_pchild(int fd_in, int fd_out);
177
178
179 extern void
180 ray_pinit( /* initialize ray-tracing processes */
181 char *otnm,
182 int nproc
183 )
184 {
185 if (nobjects > 0) /* close old calculation */
186 ray_pdone(0);
187
188 ray_init(otnm); /* load the shared scene */
189
190 preload_objs(); /* preload auxiliary data */
191
192 /* set shared memory boundary */
193 shm_boundary = (char *)malloc(16);
194 strcpy(shm_boundary, "SHM_BOUNDARY");
195
196 r_send_next = 0; /* set up queue */
197 r_recv_first = r_recv_next = RAYQLEN;
198
199 ray_popen(nproc); /* fork children */
200 }
201
202
203 static int
204 ray_pflush(void) /* send queued rays to idle children */
205 {
206 int nc, n, nw, i, sfirst;
207
208 if ((ray_pnidle <= 0) | (r_send_next <= 0))
209 return(0); /* nothing we can send */
210
211 sfirst = 0; /* divvy up labor */
212 nc = ray_pnidle;
213 for (i = ray_pnprocs; nc && i--; ) {
214 if (r_proc[i].npending > 0)
215 continue; /* child looks busy */
216 n = (r_send_next - sfirst)/nc--;
217 if (!n)
218 continue;
219 /* smuggle set size in crtype */
220 r_queue[sfirst].crtype = n;
221 nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
222 sizeof(RAY)*n);
223 if (nw != sizeof(RAY)*n)
224 return(-1); /* write error */
225 r_proc[i].npending = n;
226 while (n--) /* record ray IDs */
227 r_proc[i].rno[n] = r_queue[sfirst+n].rno;
228 sfirst += r_proc[i].npending;
229 ray_pnidle--; /* now she's busy */
230 }
231 if (sfirst != r_send_next)
232 error(CONSISTENCY, "code screwup in ray_pflush");
233 r_send_next = 0;
234 return(sfirst); /* return total # sent */
235 }
236
237
238 extern void
239 ray_psend( /* add a ray to our send queue */
240 RAY *r
241 )
242 {
243 if (r == NULL)
244 return;
245 /* flush output if necessary */
246 if (sendq_full() && ray_pflush() <= 0)
247 error(INTERNAL, "ray_pflush failed in ray_psend");
248
249 r_queue[r_send_next++] = *r;
250 }
251
252
253 extern int
254 ray_pqueue( /* queue a ray for computation */
255 RAY *r
256 )
257 {
258 if (r == NULL)
259 return(0);
260 /* check for full send queue */
261 if (sendq_full()) {
262 RAY mySend;
263 int rval;
264 mySend = *r;
265 /* wait for a result */
266 rval = ray_presult(r, 0);
267 /* put new ray in queue */
268 r_queue[r_send_next++] = mySend;
269 return(rval); /* done */
270 }
271 /* else add ray to send queue */
272 r_queue[r_send_next++] = *r;
273 /* check for returned ray... */
274 if (r_recv_first >= r_recv_next)
275 return(0);
276 /* ...one is sitting in queue */
277 *r = r_queue[r_recv_first++];
278 return(1);
279 }
280
281
282 extern int
283 ray_presult( /* check for a completed ray */
284 RAY *r,
285 int poll
286 )
287 {
288 static struct timeval tpoll; /* zero timeval struct */
289 static fd_set readset, errset;
290 int n, ok;
291 register int pn;
292
293 if (r == NULL)
294 return(0);
295 /* check queued results first */
296 if (r_recv_first < r_recv_next) {
297 *r = r_queue[r_recv_first++];
298 return(1);
299 }
300 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
301
302 if (ray_pflush() < 0) /* send new rays to process */
303 return(-1);
304 /* reset receive queue */
305 r_recv_first = r_recv_next = RAYQLEN;
306
307 if (!poll) /* count newly sent unless polling */
308 n = ray_pnprocs - ray_pnidle;
309 if (n <= 0) /* return if nothing to await */
310 return(0);
311 getready: /* any children waiting for us? */
312 for (pn = ray_pnprocs; pn--; )
313 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
314 FD_ISSET(r_proc[pn].fd_recv, &errset))
315 break;
316 /* call select if we must */
317 if (pn < 0) {
318 FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
319 for (pn = ray_pnprocs; pn--; ) {
320 if (r_proc[pn].npending > 0)
321 FD_SET(r_proc[pn].fd_recv, &readset);
322 FD_SET(r_proc[pn].fd_recv, &errset);
323 if (r_proc[pn].fd_recv >= n)
324 n = r_proc[pn].fd_recv + 1;
325 }
326 /* find out who is ready */
327 while ((n = select(n, &readset, (fd_set *)NULL, &errset,
328 poll ? &tpoll : (struct timeval *)NULL)) < 0)
329 if (errno != EINTR) {
330 error(WARNING,
331 "select call failed in ray_presult");
332 ray_pclose(0);
333 return(-1);
334 }
335 if (n > 0) /* go back and get it */
336 goto getready;
337 return(0); /* else poll came up empty */
338 }
339 if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
340 error(CONSISTENCY, "buffer shortage in ray_presult()");
341
342 /* read rendered ray data */
343 n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
344 sizeof(RAY)*r_proc[pn].npending);
345 if (n > 0) {
346 r_recv_next += n/sizeof(RAY);
347 ok = (n == sizeof(RAY)*r_proc[pn].npending);
348 } else
349 ok = 0;
350 /* reset child's status */
351 FD_CLR(r_proc[pn].fd_recv, &readset);
352 if (n <= 0)
353 FD_CLR(r_proc[pn].fd_recv, &errset);
354 r_proc[pn].npending = 0;
355 ray_pnidle++;
356 /* check for rendering errors */
357 if (!ok) {
358 ray_pclose(0); /* process died -- clean up */
359 return(-1);
360 }
361 /* preen returned rays */
362 for (n = r_recv_next - r_recv_first; n--; ) {
363 register RAY *rp = &r_queue[r_recv_first + n];
364 rp->rno = r_proc[pn].rno[n];
365 rp->parent = NULL;
366 rp->newcset = rp->clipset = NULL;
367 rp->rox = NULL;
368 rp->slights = NULL;
369 }
370 /* return first ray received */
371 *r = r_queue[r_recv_first++];
372 return(1);
373 }
374
375
376 extern void
377 ray_pdone( /* reap children and free data */
378 int freall
379 )
380 {
381 ray_pclose(0); /* close child processes */
382
383 if (shm_boundary != NULL) { /* clear shared memory boundary */
384 free((void *)shm_boundary);
385 shm_boundary = NULL;
386 }
387 ray_done(freall); /* free rendering data */
388 }
389
390
391 static void
392 ray_pchild( /* process rays (never returns) */
393 int fd_in,
394 int fd_out
395 )
396 {
397 int n;
398 register int i;
399 /* read each ray request set */
400 while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
401 int n2;
402 if (n < sizeof(RAY))
403 break;
404 /* get smuggled set length */
405 n2 = sizeof(RAY)*r_queue[0].crtype - n;
406 if (n2 < 0)
407 error(INTERNAL, "buffer over-read in ray_pchild");
408 if (n2 > 0) { /* read the rest of the set */
409 i = readbuf(fd_in, (char *)r_queue + n, n2);
410 if (i != n2)
411 break;
412 n += n2;
413 }
414 n /= sizeof(RAY);
415 /* evaluate rays */
416 for (i = 0; i < n; i++) {
417 r_queue[i].crtype = r_queue[i].rtype;
418 r_queue[i].parent = NULL;
419 r_queue[i].clipset = NULL;
420 r_queue[i].slights = NULL;
421 samplendx++;
422 rayclear(&r_queue[i]);
423 rayvalue(&r_queue[i]);
424 }
425 /* write back our results */
426 i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
427 if (i != sizeof(RAY)*n)
428 error(SYSTEM, "write error in ray_pchild");
429 }
430 if (n)
431 error(SYSTEM, "read error in ray_pchild");
432 ambsync();
433 quit(0); /* normal exit */
434 }
435
436
437 extern void
438 ray_popen( /* open the specified # processes */
439 int nadd
440 )
441 {
442 /* check if our table has room */
443 if (ray_pnprocs + nadd > MAX_NPROCS)
444 nadd = MAX_NPROCS - ray_pnprocs;
445 if (nadd <= 0)
446 return;
447 ambsync(); /* load any new ambient values */
448 fflush(NULL); /* clear pending output */
449 while (nadd--) { /* fork each new process */
450 int p0[2], p1[2];
451 if (pipe(p0) < 0 || pipe(p1) < 0)
452 error(SYSTEM, "cannot create pipe");
453 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
454 int pn; /* close others' descriptors */
455 for (pn = ray_pnprocs; pn--; ) {
456 close(r_proc[pn].fd_send);
457 close(r_proc[pn].fd_recv);
458 }
459 close(p0[0]); close(p1[1]);
460 /* following call never returns */
461 ray_pchild(p1[0], p0[1]);
462 }
463 if (r_proc[ray_pnprocs].pid < 0)
464 error(SYSTEM, "cannot fork child process");
465 close(p1[0]); close(p0[1]);
466 /*
467 * Close write stream on exec to avoid multiprocessing deadlock.
468 * No use in read stream without it, so set flag there as well.
469 */
470 fcntl(p1[1], F_SETFD, FD_CLOEXEC);
471 fcntl(p0[0], F_SETFD, FD_CLOEXEC);
472 r_proc[ray_pnprocs].fd_send = p1[1];
473 r_proc[ray_pnprocs].fd_recv = p0[0];
474 r_proc[ray_pnprocs].npending = 0;
475 ray_pnprocs++;
476 ray_pnidle++;
477 }
478 }
479
480
481 extern void
482 ray_pclose( /* close one or more child processes */
483 int nsub
484 )
485 {
486 static int inclose = 0;
487 RAY res;
488 /* check recursion */
489 if (inclose)
490 return;
491 inclose++;
492 /* check argument */
493 if ((nsub <= 0) | (nsub > ray_pnprocs))
494 nsub = ray_pnprocs;
495 /* clear our ray queue */
496 while (ray_presult(&res,0) > 0)
497 ;
498 /* clean up children */
499 while (nsub--) {
500 int status;
501 ray_pnprocs--;
502 close(r_proc[ray_pnprocs].fd_recv);
503 close(r_proc[ray_pnprocs].fd_send);
504 if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
505 status = 127<<8;
506 if (status) {
507 sprintf(errmsg,
508 "rendering process %d exited with code %d",
509 r_proc[ray_pnprocs].pid, status>>8);
510 error(WARNING, errmsg);
511 }
512 ray_pnidle--;
513 }
514 inclose--;
515 }
516
517
518 void
519 quit(ec) /* make sure exit is called */
520 int ec;
521 {
522 exit(ec);
523 }