23 |
|
* The first step is opening one or more rendering processes |
24 |
|
* with a call to ray_pinit(oct, nproc). Before calling fork(), |
25 |
|
* ray_pinit() loads the octree and data structures into the |
26 |
< |
* caller's memory. This permits all sorts of queries that |
27 |
< |
* wouldn't be possible otherwise, without causing any real |
26 |
> |
* caller's memory, and ray_popen() synchronizes the ambient |
27 |
> |
* file, if any. Shared memory permits all sorts of queries |
28 |
> |
* that wouldn't be possible otherwise, without causing any real |
29 |
|
* memory overhead, since all the static data are shared |
30 |
|
* between processes. Rays are then traced using a simple |
31 |
|
* queuing mechanism, explained below. |
32 |
|
* |
33 |
< |
* The ray queue holds as many rays as there are rendering |
34 |
< |
* processes. Rays are queued and returned by a single |
33 |
> |
* The ray queue buffers RAYQLEN rays before sending to |
34 |
> |
* children, each of which may internally buffer RAYQLEN rays. |
35 |
> |
* |
36 |
> |
* Rays are queued and returned by a single |
37 |
|
* ray_pqueue() call. A ray_pqueue() return |
38 |
|
* value of 0 indicates that no rays are ready |
39 |
|
* and the queue is not yet full. A return value of 1 |
46 |
|
* myRay.rorg = ( ray origin point ) |
47 |
|
* myRay.rdir = ( normalized ray direction ) |
48 |
|
* myRay.rmax = ( maximum length, or zero for no limit ) |
49 |
< |
* rayorigin(&myRay, NULL, PRIMARY, 1.0); |
49 |
> |
* rayorigin(&myRay, PRIMARY, NULL, NULL); |
50 |
|
* myRay.rno = ( my personal ray identifier ) |
51 |
|
* if (ray_pqueue(&myRay) == 1) |
52 |
|
* { do something with results } |
108 |
|
* Note: These routines are written to coordinate with the |
109 |
|
* definitions in raycalls.c, and in fact depend on them. |
110 |
|
* If you want to trace a ray and get a result synchronously, |
111 |
< |
* use the ray_trace() call to compute it in the parent process |
111 |
> |
* use the ray_trace() call to compute it in the parent process. |
112 |
|
* This will not interfere with any subprocess calculations, |
113 |
|
* but beware that a fatal error may end with a call to quit(). |
114 |
|
* |
131 |
|
* process should not be compromised. |
132 |
|
*/ |
133 |
|
|
131 |
– |
#include <stdio.h> |
132 |
– |
#include <sys/types.h> |
133 |
– |
#include <sys/wait.h> /* XXX platform */ |
134 |
– |
|
134 |
|
#include "rtprocess.h" |
135 |
|
#include "ray.h" |
136 |
|
#include "ambient.h" |
137 |
+ |
#include <sys/types.h> |
138 |
+ |
#include <sys/wait.h> |
139 |
|
#include "selcall.h" |
140 |
|
|
141 |
|
#ifndef RAYQLEN |
142 |
< |
#define RAYQLEN 16 /* # rays to send at once */ |
142 |
> |
#define RAYQLEN 12 /* # rays to send at once */ |
143 |
|
#endif |
144 |
|
|
145 |
|
#ifndef MAX_RPROCS |
171 |
|
#define sendq_full() (r_send_next >= RAYQLEN) |
172 |
|
|
173 |
|
static int ray_pflush(void); |
174 |
< |
static void ray_pchild(int fd_in, int fd_out); |
174 |
> |
static void ray_pchild(int fd_in, int fd_out); |
175 |
|
|
176 |
|
|
177 |
|
extern void |
185 |
|
|
186 |
|
ray_init(otnm); /* load the shared scene */ |
187 |
|
|
187 |
– |
preload_objs(); /* preload auxiliary data */ |
188 |
– |
|
189 |
– |
/* set shared memory boundary */ |
190 |
– |
shm_boundary = (char *)malloc(16); |
191 |
– |
strcpy(shm_boundary, "SHM_BOUNDARY"); |
192 |
– |
|
188 |
|
r_send_next = 0; /* set up queue */ |
189 |
|
r_recv_first = r_recv_next = RAYQLEN; |
190 |
|
|
238 |
|
if (sendq_full() && ray_pflush() <= 0) |
239 |
|
error(INTERNAL, "ray_pflush failed in ray_psend"); |
240 |
|
|
241 |
< |
r_queue[r_send_next] = *r; |
247 |
< |
r_send_next++; |
241 |
> |
r_queue[r_send_next++] = *r; |
242 |
|
} |
243 |
|
|
244 |
|
|
251 |
|
return(0); |
252 |
|
/* check for full send queue */ |
253 |
|
if (sendq_full()) { |
254 |
< |
RAY mySend; |
261 |
< |
int rval; |
262 |
< |
mySend = *r; |
254 |
> |
RAY mySend = *r; |
255 |
|
/* wait for a result */ |
256 |
< |
rval = ray_presult(r, 0); |
256 |
> |
if (ray_presult(r, 0) <= 0) |
257 |
> |
return(-1); |
258 |
|
/* put new ray in queue */ |
259 |
< |
r_queue[r_send_next] = mySend; |
260 |
< |
r_send_next++; |
261 |
< |
return(rval); /* done */ |
259 |
> |
r_queue[r_send_next++] = mySend; |
260 |
> |
/* XXX r_send_next may now be > RAYQLEN */ |
261 |
> |
return(1); |
262 |
|
} |
263 |
< |
/* add ray to send queue */ |
264 |
< |
r_queue[r_send_next] = *r; |
272 |
< |
r_send_next++; |
263 |
> |
/* else add ray to send queue */ |
264 |
> |
r_queue[r_send_next++] = *r; |
265 |
|
/* check for returned ray... */ |
266 |
|
if (r_recv_first >= r_recv_next) |
267 |
|
return(0); |
268 |
|
/* ...one is sitting in queue */ |
269 |
< |
*r = r_queue[r_recv_first]; |
278 |
< |
r_recv_first++; |
269 |
> |
*r = r_queue[r_recv_first++]; |
270 |
|
return(1); |
271 |
|
} |
272 |
|
|
286 |
|
return(0); |
287 |
|
/* check queued results first */ |
288 |
|
if (r_recv_first < r_recv_next) { |
289 |
< |
*r = r_queue[r_recv_first]; |
299 |
< |
r_recv_first++; |
289 |
> |
*r = r_queue[r_recv_first++]; |
290 |
|
return(1); |
291 |
|
} |
292 |
|
n = ray_pnprocs - ray_pnidle; /* pending before flush? */ |
300 |
|
n = ray_pnprocs - ray_pnidle; |
301 |
|
if (n <= 0) /* return if nothing to await */ |
302 |
|
return(0); |
303 |
+ |
if (!poll && ray_pnprocs == 1) /* one process -> skip select() */ |
304 |
+ |
FD_SET(r_proc[0].fd_recv, &readset); |
305 |
+ |
|
306 |
|
getready: /* any children waiting for us? */ |
307 |
|
for (pn = ray_pnprocs; pn--; ) |
308 |
|
if (FD_ISSET(r_proc[pn].fd_recv, &readset) || |
363 |
|
rp->slights = NULL; |
364 |
|
} |
365 |
|
/* return first ray received */ |
366 |
< |
*r = r_queue[r_recv_first]; |
374 |
< |
r_recv_first++; |
366 |
> |
*r = r_queue[r_recv_first++]; |
367 |
|
return(1); |
368 |
|
} |
369 |
|
|
391 |
|
{ |
392 |
|
int n; |
393 |
|
register int i; |
394 |
+ |
/* flag child process for quit() */ |
395 |
+ |
ray_pnprocs = -1; |
396 |
|
/* read each ray request set */ |
397 |
|
while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) { |
398 |
|
int n2; |
399 |
< |
if (n % sizeof(RAY)) |
399 |
> |
if (n < sizeof(RAY)) |
400 |
|
break; |
407 |
– |
n /= sizeof(RAY); |
401 |
|
/* get smuggled set length */ |
402 |
< |
n2 = r_queue[0].crtype - n; |
402 |
> |
n2 = sizeof(RAY)*r_queue[0].crtype - n; |
403 |
|
if (n2 < 0) |
404 |
|
error(INTERNAL, "buffer over-read in ray_pchild"); |
405 |
|
if (n2 > 0) { /* read the rest of the set */ |
406 |
< |
i = readbuf(fd_in, (char *)(r_queue+n), |
407 |
< |
sizeof(RAY)*n2); |
415 |
< |
if (i != sizeof(RAY)*n2) |
406 |
> |
i = readbuf(fd_in, (char *)r_queue + n, n2); |
407 |
> |
if (i != n2) |
408 |
|
break; |
409 |
|
n += n2; |
410 |
|
} |
411 |
+ |
n /= sizeof(RAY); |
412 |
|
/* evaluate rays */ |
413 |
|
for (i = 0; i < n; i++) { |
414 |
|
r_queue[i].crtype = r_queue[i].rtype; |
415 |
|
r_queue[i].parent = NULL; |
416 |
|
r_queue[i].clipset = NULL; |
417 |
|
r_queue[i].slights = NULL; |
425 |
– |
r_queue[i].revf = raytrace; |
418 |
|
samplendx++; |
419 |
|
rayclear(&r_queue[i]); |
420 |
|
rayvalue(&r_queue[i]); |
441 |
|
nadd = MAX_NPROCS - ray_pnprocs; |
442 |
|
if (nadd <= 0) |
443 |
|
return; |
444 |
< |
fflush(stderr); /* clear pending output */ |
445 |
< |
fflush(stdout); |
444 |
> |
ambsync(); /* load any new ambient values */ |
445 |
> |
if (shm_boundary == NULL) { /* first child process? */ |
446 |
> |
preload_objs(); /* preload auxiliary data */ |
447 |
> |
/* set shared memory boundary */ |
448 |
> |
shm_boundary = (char *)malloc(16); |
449 |
> |
strcpy(shm_boundary, "SHM_BOUNDARY"); |
450 |
> |
} |
451 |
> |
fflush(NULL); /* clear pending output */ |
452 |
|
while (nadd--) { /* fork each new process */ |
453 |
|
int p0[2], p1[2]; |
454 |
|
if (pipe(p0) < 0 || pipe(p1) < 0) |
522 |
|
quit(ec) /* make sure exit is called */ |
523 |
|
int ec; |
524 |
|
{ |
525 |
+ |
if (ray_pnprocs > 0) /* close children if any */ |
526 |
+ |
ray_pclose(0); |
527 |
|
exit(ec); |
528 |
|
} |