71 |
|
* |
72 |
|
* If the second argument is 1, the call won't block when |
73 |
|
* results aren't ready, but will immediately return 0. |
74 |
– |
* (A special value of -1 returns 0 unless a ray is |
75 |
– |
* ready in the queue and no system calls are needed.) |
74 |
|
* If the second argument is 0, the call will block |
75 |
|
* until a value is available, returning 0 only if the |
76 |
< |
* queue is completely empty. A negative return value |
76 |
> |
* queue is completely empty. Setting the second argument |
77 |
> |
* to -1 returns 0 unless a ray is ready in the queue and |
78 |
> |
* no system calls are needed. A negative return value |
79 |
|
* indicates that a rendering process died. If this |
80 |
|
* happens, ray_pclose(0) is automatically called to close |
81 |
|
* all child processes, and ray_pnprocs is set to zero. |
88 |
|
* ray_psend(&myRay); |
89 |
|
* } |
90 |
|
* |
91 |
< |
* Note that it is a fatal error to call ra_psend() when |
92 |
< |
* ray_pnidle is zero. The ray_presult() and/or ray_pqueue() |
93 |
< |
* functions may be called subsequently to read back the results. |
91 |
> |
* Note that it is a mistake to call ra_psend() when |
92 |
> |
* ray_pnidle is zero, and nothing will be sent in |
93 |
> |
* this case. Otherwise, the ray_presult() and/or ray_pqueue() |
94 |
> |
* functions may be called subsequently to read back the results |
95 |
> |
* of rays queued by ray_psend(). |
96 |
|
* |
97 |
|
* When you are done, you may call ray_pdone(1) to close |
98 |
|
* all child processes and clean up memory used by Radiance. |
147 |
|
#include "selcall.h" |
148 |
|
|
149 |
|
#ifndef RAYQLEN |
150 |
< |
#define RAYQLEN 12 /* # rays to send at once */ |
150 |
> |
#define RAYQLEN 24 /* # rays to send at once */ |
151 |
|
#endif |
152 |
|
|
153 |
|
#ifndef MAX_RPROCS |
158 |
|
#endif |
159 |
|
#endif |
160 |
|
|
159 |
– |
extern char *shm_boundary; /* boundary of shared memory */ |
160 |
– |
|
161 |
|
int ray_pnprocs = 0; /* number of child processes */ |
162 |
|
int ray_pnidle = 0; /* number of idle children */ |
163 |
|
|
164 |
|
static struct child_proc { |
165 |
< |
int pid; /* child process id */ |
165 |
> |
RT_PID pid; /* child process id */ |
166 |
|
int fd_send; /* write to child here */ |
167 |
|
int fd_recv; /* read from child here */ |
168 |
|
int npending; /* # rays in process */ |
174 |
|
static int r_recv_first = RAYQLEN; /* position of first unreported ray */ |
175 |
|
static int r_recv_next = RAYQLEN; /* next received ray placement */ |
176 |
|
|
177 |
+ |
static int samplestep = 1; /* sample step size */ |
178 |
+ |
|
179 |
|
#define sendq_full() (r_send_next >= RAYQLEN) |
180 |
|
|
181 |
|
static int ray_pflush(void); |
210 |
|
for (i = ray_pnprocs; nc && i--; ) { |
211 |
|
if (r_proc[i].npending > 0) |
212 |
|
continue; /* child looks busy */ |
213 |
< |
n = (r_send_next - sfirst)/nc--; |
213 |
> |
n = (r_send_next - sfirst) / nc--; |
214 |
|
if (!n) |
215 |
|
continue; |
216 |
|
/* smuggle set size in crtype */ |
217 |
|
r_queue[sfirst].crtype = n; |
218 |
< |
nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst], |
218 |
> |
nw = writebuf(r_proc[i].fd_send, &r_queue[sfirst], |
219 |
|
sizeof(RAY)*n); |
220 |
|
if (nw != sizeof(RAY)*n) |
221 |
|
return(-1); /* write error */ |
232 |
|
} |
233 |
|
|
234 |
|
|
235 |
< |
void |
235 |
> |
int |
236 |
|
ray_psend( /* add a ray to our send queue */ |
237 |
|
RAY *r |
238 |
|
) |
239 |
|
{ |
240 |
< |
if (r == NULL) |
241 |
< |
return; |
240 |
> |
int rv; |
241 |
> |
|
242 |
> |
if ((r == NULL) | (ray_pnidle <= 0)) |
243 |
> |
return(0); |
244 |
|
/* flush output if necessary */ |
245 |
< |
if (sendq_full() && ray_pflush() <= 0) |
246 |
< |
error(INTERNAL, "ray_pflush failed in ray_psend()"); |
245 |
> |
if (sendq_full() && (rv = ray_pflush()) <= 0) |
246 |
> |
return(rv); |
247 |
|
|
248 |
|
r_queue[r_send_next++] = *r; |
249 |
+ |
return(1); |
250 |
|
} |
251 |
|
|
252 |
|
|
265 |
|
return(-1); |
266 |
|
/* put new ray in queue */ |
267 |
|
r_queue[r_send_next++] = mySend; |
268 |
< |
/* XXX r_send_next may now be > RAYQLEN */ |
268 |
> |
|
269 |
|
return(1); |
270 |
|
} |
271 |
|
/* else add ray to send queue */ |
288 |
|
static struct timeval tpoll; /* zero timeval struct */ |
289 |
|
static fd_set readset, errset; |
290 |
|
int n, ok; |
291 |
< |
register int pn; |
291 |
> |
int pn; |
292 |
|
|
293 |
|
if (r == NULL) |
294 |
|
return(0); |
346 |
|
error(CONSISTENCY, "buffer shortage in ray_presult()"); |
347 |
|
|
348 |
|
/* read rendered ray data */ |
349 |
< |
n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next], |
349 |
> |
n = readbuf(r_proc[pn].fd_recv, &r_queue[r_recv_next], |
350 |
|
sizeof(RAY)*r_proc[pn].npending); |
351 |
|
if (n > 0) { |
352 |
|
r_recv_next += n/sizeof(RAY); |
366 |
|
} |
367 |
|
/* preen returned rays */ |
368 |
|
for (n = r_recv_next - r_recv_first; n--; ) { |
369 |
< |
register RAY *rp = &r_queue[r_recv_first + n]; |
369 |
> |
RAY *rp = &r_queue[r_recv_first + n]; |
370 |
|
rp->rno = r_proc[pn].rno[n]; |
371 |
|
rp->parent = NULL; |
372 |
|
rp->newcset = rp->clipset = NULL; |
386 |
|
{ |
387 |
|
ray_pclose(0); /* close child processes */ |
388 |
|
|
389 |
< |
if (shm_boundary != NULL) { /* clear shared memory boundary */ |
385 |
< |
free((void *)shm_boundary); |
386 |
< |
shm_boundary = NULL; |
387 |
< |
} |
389 |
> |
cow_doneshare(); /* clear shared memory boundary */ |
390 |
|
|
391 |
|
ray_done(freall); /* free rendering data */ |
392 |
|
} |
399 |
|
) |
400 |
|
{ |
401 |
|
int n; |
402 |
< |
register int i; |
402 |
> |
int i; |
403 |
|
/* flag child process for quit() */ |
404 |
|
ray_pnprocs = -1; |
405 |
|
/* read each ray request set */ |
425 |
|
r_queue[i].clipset = NULL; |
426 |
|
r_queue[i].slights = NULL; |
427 |
|
r_queue[i].rlvl = 0; |
428 |
< |
samplendx++; |
428 |
> |
samplendx += samplestep; |
429 |
|
rayclear(&r_queue[i]); |
430 |
|
rayvalue(&r_queue[i]); |
431 |
|
} |
432 |
|
/* write back our results */ |
433 |
< |
i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n); |
433 |
> |
i = writebuf(fd_out, r_queue, sizeof(RAY)*n); |
434 |
|
if (i != sizeof(RAY)*n) |
435 |
|
error(SYSTEM, "write error in ray_pchild()"); |
436 |
|
} |
451 |
|
nadd = MAX_NPROCS - ray_pnprocs; |
452 |
|
if (nadd <= 0) |
453 |
|
return; |
454 |
+ |
if (nobjects <= 0) |
455 |
+ |
error(CONSISTENCY, "ray_popen() called before scene loaded"); |
456 |
|
ambsync(); /* load any new ambient values */ |
457 |
< |
if (shm_boundary == NULL) { /* first child process? */ |
454 |
< |
preload_objs(); /* preload auxiliary data */ |
455 |
< |
/* set shared memory boundary */ |
456 |
< |
shm_boundary = (char *)malloc(16); |
457 |
< |
strcpy(shm_boundary, "SHM_BOUNDARY"); |
458 |
< |
} |
457 |
> |
cow_memshare(); /* copy-on-write shared memory */ |
458 |
|
fflush(NULL); /* clear pending output */ |
459 |
+ |
samplestep = ray_pnprocs + nadd; |
460 |
|
while (nadd--) { /* fork each new process */ |
461 |
|
int p0[2], p1[2]; |
462 |
|
if (pipe(p0) < 0 || pipe(p1) < 0) |
475 |
|
if (r_proc[ray_pnprocs].pid < 0) |
476 |
|
error(SYSTEM, "cannot fork child process"); |
477 |
|
close(p1[0]); close(p0[1]); |
478 |
+ |
if (rand_samp) /* decorrelate random sequence */ |
479 |
+ |
srandom(random()); |
480 |
+ |
else |
481 |
+ |
samplendx++; |
482 |
|
/* |
483 |
|
* Close write stream on exec to avoid multiprocessing deadlock. |
484 |
|
* No use in read stream without it, so set flag there as well. |
500 |
|
) |
501 |
|
{ |
502 |
|
static int inclose = 0; |
503 |
< |
RAY res; |
503 |
> |
RAY res; |
504 |
> |
int i, status = 0; |
505 |
> |
/* check no child / in child */ |
506 |
> |
if (ray_pnprocs <= 0) |
507 |
> |
return; |
508 |
|
/* check recursion */ |
509 |
|
if (inclose) |
510 |
|
return; |
513 |
|
if ((nsub <= 0) | (nsub > ray_pnprocs)) |
514 |
|
nsub = ray_pnprocs; |
515 |
|
/* clear our ray queue */ |
516 |
+ |
i = r_send_next; |
517 |
+ |
r_send_next = 0; |
518 |
|
while (ray_presult(&res,0) > 0) |
519 |
< |
; |
520 |
< |
r_send_next = 0; /* hard reset in case of error */ |
519 |
> |
++i; |
520 |
> |
if (i) { |
521 |
> |
sprintf(errmsg, "dropped %d rays in ray_pclose()", i); |
522 |
> |
error(WARNING, errmsg); |
523 |
> |
} |
524 |
|
r_recv_first = r_recv_next = RAYQLEN; |
525 |
< |
/* clean up children */ |
526 |
< |
while (nsub--) { |
527 |
< |
int status; |
528 |
< |
ray_pnprocs--; |
529 |
< |
close(r_proc[ray_pnprocs].fd_send); |
530 |
< |
if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0) |
525 |
> |
/* close send pipes */ |
526 |
> |
for (i = ray_pnprocs-nsub; i < ray_pnprocs; i++) |
527 |
> |
close(r_proc[i].fd_send); |
528 |
> |
|
529 |
> |
if (nsub == 1) { /* awaiting single process? */ |
530 |
> |
if (waitpid(r_proc[ray_pnprocs-1].pid, &status, 0) < 0) |
531 |
|
status = 127<<8; |
532 |
< |
close(r_proc[ray_pnprocs].fd_recv); |
533 |
< |
if (status) { |
534 |
< |
sprintf(errmsg, |
535 |
< |
"rendering process %d exited with code %d", |
536 |
< |
r_proc[ray_pnprocs].pid, status>>8); |
537 |
< |
error(WARNING, errmsg); |
532 |
> |
close(r_proc[ray_pnprocs-1].fd_recv); |
533 |
> |
} else /* else unordered wait */ |
534 |
> |
for (i = 0; i < nsub; ) { |
535 |
> |
int j, mystatus; |
536 |
> |
RT_PID pid = wait(&mystatus); |
537 |
> |
if (pid < 0) { |
538 |
> |
status = 127<<8; |
539 |
> |
break; |
540 |
> |
} |
541 |
> |
for (j = ray_pnprocs-nsub; j < ray_pnprocs; j++) |
542 |
> |
if (r_proc[j].pid == pid) { |
543 |
> |
if (mystatus) |
544 |
> |
status = mystatus; |
545 |
> |
close(r_proc[j].fd_recv); |
546 |
> |
++i; |
547 |
> |
} |
548 |
|
} |
549 |
< |
ray_pnidle--; |
549 |
> |
ray_pnprocs -= nsub; |
550 |
> |
ray_pnidle -= nsub; |
551 |
> |
if (status) { |
552 |
> |
sprintf(errmsg, "rendering process exited with code %d", status>>8); |
553 |
> |
error(WARNING, errmsg); |
554 |
|
} |
555 |
|
inclose--; |
556 |
|
} |