ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.20 by greg, Tue Dec 2 23:28:34 2008 UTC vs.
Revision 2.23 by greg, Sat Dec 12 19:01:00 2009 UTC

# Line 13 | Line 13 | static const char      RCSid[] = "$Id$";
13   *  These calls are designed similarly to the ones in raycalls.c,
14   *  but allow for multiple rendering processes on the same host
15   *  machine.  There is no sense in specifying more child processes
16 < *  than you have processors, but one child may help by allowing
16 > *  than you have processor cores, but one child may help by allowing
17   *  asynchronous ray computation in an interactive program, and
18   *  will protect the caller from fatal rendering errors.
19   *
20 < *  You should first read and undrstand the header in raycalls.c,
20 > *  You should first read and understand the header in raycalls.c,
21   *  as some things are explained there that are not repated here.
22   *
23   *  The first step is opening one or more rendering processes
# Line 25 | Line 25 | static const char      RCSid[] = "$Id$";
25   *  ray_pinit() loads the octree and data structures into the
26   *  caller's memory, and ray_popen() synchronizes the ambient
27   *  file, if any.  Shared memory permits all sorts of queries
28 < *  that wouldn't be possible otherwise, without causing any real
28 > *  that wouldn't be possible otherwise without causing any real
29   *  memory overhead, since all the static data are shared
30 < *  between processes.  Rays are then traced using a simple
30 > *  between processes.  Rays are traced using a simple
31   *  queuing mechanism, explained below.
32   *
33   *  The ray queue buffers RAYQLEN rays before sending to
34 < *  children, each of which may internally buffer RAYQLEN rays.
34 > *  children, each of which may internally buffer RAYQLEN rays
35 > *  during evaluation.  Rays are not returned in the order
36 > *  they are sent when multiple processes are open.
37   *
38   *  Rays are queued and returned by a single
39   *  ray_pqueue() call.  A ray_pqueue() return
# Line 69 | Line 71 | static const char      RCSid[] = "$Id$";
71   *
72   *  If the second argument is 1, the call won't block when
73   *  results aren't ready, but will immediately return 0.
74 + *  (A special value of -1 returns 0 unless a ray is
75 + *  ready in the queue and no system calls are needed.)
76   *  If the second argument is 0, the call will block
77   *  until a value is available, returning 0 only if the
78   *  queue is completely empty.  A negative return value
79   *  indicates that a rendering process died.  If this
80 < *  happens, ray_close(0) is automatically called to close
80 > *  happens, ray_pclose(0) is automatically called to close
81   *  all child processes, and ray_pnprocs is set to zero.
82   *
83   *  If you just want to fill the ray queue without checking for
# Line 93 | Line 97 | static const char      RCSid[] = "$Id$";
97   *  Any queued ray calculations will be awaited and discarded.
98   *  As with ray_done(), ray_pdone(0) hangs onto data files
99   *  and fonts that are likely to be used in subsequent renderings.
100 < *  Whether you want to bother cleaning up memory or not, you
101 < *  should at least call ray_pclose(0) to clean the child processes.
100 > *  Whether you need to clean up memory or not, you should
101 > *  at least call ray_pclose(0) to await the child processes.
102 > *  The caller should define a quit() function that calls
103 > *  ray_pclose(0) if ray_pnprocs > 0.
104   *
105   *  Warning:  You cannot affect any of the rendering processes
106   *  by changing global parameter values onece ray_pinit() has
# Line 124 | Line 130 | static const char      RCSid[] = "$Id$";
130   *  returning a negative value from ray_pqueue() or
131   *  ray_presult().  If you get a negative value from either
132   *  of these calls, you can assume that the processes have
133 < *  been cleaned up with a call to ray_close(), though you
133 > *  been cleaned up with a call to ray_pclose(), though you
134   *  will have to call ray_pdone() yourself if you want to
135   *  free memory.  Obviously, you cannot continue rendering
136   *  without risking further errors, but otherwise your
# Line 160 | Line 166 | static struct child_proc {
166          int     fd_send;                        /* write to child here */
167          int     fd_recv;                        /* read from child here */
168          int     npending;                       /* # rays in process */
169 <        unsigned long  rno[RAYQLEN];            /* working on these rays */
169 >        RNUMBER rno[RAYQLEN];                   /* working on these rays */
170   } r_proc[MAX_NPROCS];                   /* our child processes */
171  
172   static RAY      r_queue[2*RAYQLEN];     /* ray i/o buffer */
173 < static int      r_send_next;            /* next send ray placement */
174 < static int      r_recv_first;           /* position of first unreported ray */
175 < static int      r_recv_next;            /* next receive ray placement */
173 > static int      r_send_next = 0;        /* next send ray placement */
174 > static int      r_recv_first = RAYQLEN; /* position of first unreported ray */
175 > static int      r_recv_next = RAYQLEN;  /* next received ray placement */
176  
177   #define sendq_full()    (r_send_next >= RAYQLEN)
178  
# Line 174 | Line 180 | static int ray_pflush(void);
180   static void ray_pchild(int fd_in, int fd_out);
181  
182  
183 < extern void
183 > void
184   ray_pinit(              /* initialize ray-tracing processes */
185          char    *otnm,
186          int     nproc
# Line 185 | Line 191 | ray_pinit(             /* initialize ray-tracing processes */
191  
192          ray_init(otnm);                 /* load the shared scene */
193  
188        r_send_next = 0;                /* set up queue */
189        r_recv_first = r_recv_next = RAYQLEN;
190
194          ray_popen(nproc);               /* fork children */
195   }
196  
# Line 227 | Line 230 | ray_pflush(void)                       /* send queued rays to idle childre
230   }
231  
232  
233 < extern void
233 > void
234   ray_psend(                      /* add a ray to our send queue */
235          RAY     *r
236   )
# Line 242 | Line 245 | ray_psend(                     /* add a ray to our send queue */
245   }
246  
247  
248 < extern int
248 > int
249   ray_pqueue(                     /* queue a ray for computation */
250          RAY     *r
251   )
# Line 271 | Line 274 | ray_pqueue(                    /* queue a ray for computation */
274   }
275  
276  
277 < extern int
277 > int
278   ray_presult(            /* check for a completed ray */
279          RAY     *r,
280          int     poll
# Line 289 | Line 292 | ray_presult(           /* check for a completed ray */
292                  *r = r_queue[r_recv_first++];
293                  return(1);
294          }
295 +        if (poll < 0)                   /* immediate polling mode? */
296 +                return(0);
297 +
298          n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
299  
300          if (ray_pflush() < 0)           /* send new rays to process */
# Line 308 | Line 314 | getready:                              /* any children waiting for us? */
314                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
315                                  FD_ISSET(r_proc[pn].fd_recv, &errset))
316                          break;
317 <                                        /* call select if we must */
317 >                                        /* call select() if we must */
318          if (pn < 0) {
319                  FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
320                  for (pn = ray_pnprocs; pn--; ) {
# Line 368 | Line 374 | getready:                              /* any children waiting for us? */
374   }
375  
376  
377 < extern void
377 > void
378   ray_pdone(              /* reap children and free data */
379          int     freall
380   )
# Line 379 | Line 385 | ray_pdone(             /* reap children and free data */
385                  free((void *)shm_boundary);
386                  shm_boundary = NULL;
387          }
388 +
389          ray_done(freall);               /* free rendering data */
390   }
391  
# Line 415 | Line 422 | ray_pchild(    /* process rays (never returns) */
422                          r_queue[i].parent = NULL;
423                          r_queue[i].clipset = NULL;
424                          r_queue[i].slights = NULL;
425 +                        r_queue[i].rlvl = 0;
426                          samplendx++;
427                          rayclear(&r_queue[i]);
428                          rayvalue(&r_queue[i]);
# Line 431 | Line 439 | ray_pchild(    /* process rays (never returns) */
439   }
440  
441  
442 < extern void
442 > void
443   ray_popen(                      /* open the specified # processes */
444          int     nadd
445   )
# Line 481 | Line 489 | ray_popen(                     /* open the specified # processes */
489   }
490  
491  
492 < extern void
492 > void
493   ray_pclose(             /* close one or more child processes */
494          int     nsub
495   )
# Line 498 | Line 506 | ray_pclose(            /* close one or more child processes */
506                                          /* clear our ray queue */
507          while (ray_presult(&res,0) > 0)
508                  ;
509 +        r_send_next = 0;                /* hard reset in case of error */
510 +        r_recv_first = r_recv_next = RAYQLEN;
511                                          /* clean up children */
512          while (nsub--) {
513                  int     status;
# Line 515 | Line 525 | ray_pclose(            /* close one or more child processes */
525                  ray_pnidle--;
526          }
527          inclose--;
518 }
519
520
521 void
522 quit(ec)                        /* make sure exit is called */
523 int     ec;
524 {
525        if (ray_pnprocs > 0)    /* close children if any */
526                ray_pclose(0);          
527        exit(ec);
528   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines