ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.2 by greg, Tue Feb 25 02:47:23 2003 UTC vs.
Revision 2.13 by greg, Tue Dec 20 20:36:44 2005 UTC

# Line 23 | Line 23 | static const char      RCSid[] = "$Id$";
23   *  The first step is opening one or more rendering processes
24   *  with a call to ray_pinit(oct, nproc).  Before calling fork(),
25   *  ray_pinit() loads the octree and data structures into the
26 < *  caller's memory.  This permits all sorts of queries that
27 < *  wouldn't be possible otherwise, without causing any real
26 > *  caller's memory, and ray_popen() synchronizes the ambient
27 > *  file, if any.  Shared memory permits all sorts of queries
28 > *  that wouldn't be possible otherwise, without causing any real
29   *  memory overhead, since all the static data are shared
30   *  between processes.  Rays are then traced using a simple
31   *  queuing mechanism, explained below.
32   *
33 < *  The ray queue holds as many rays as there are rendering
34 < *  processes.  Rays are queued and returned by a single
33 > *  The ray queue holds at least RAYQLEN rays, up to
34 > *  as many rays as there are rendering processes.
35 > *  Rays are queued and returned by a single
36   *  ray_pqueue() call.  A ray_pqueue() return
37   *  value of 0 indicates that no rays are ready
38   *  and the queue is not yet full.  A return value of 1
# Line 43 | Line 45 | static const char      RCSid[] = "$Id$";
45   *      myRay.rorg = ( ray origin point )
46   *      myRay.rdir = ( normalized ray direction )
47   *      myRay.rmax = ( maximum length, or zero for no limit )
48 < *      rayorigin(&myRay, NULL, PRIMARY, 1.0);
48 > *      rayorigin(&myRay, PRIMARY, NULL, NULL);
49   *      myRay.rno = ( my personal ray identifier )
50   *      if (ray_pqueue(&myRay) == 1)
51   *              { do something with results }
# Line 51 | Line 53 | static const char      RCSid[] = "$Id$";
53   *  Note the differences between this and the simpler ray_trace()
54   *  call.  In particular, the call may or may not return a value
55   *  in the passed ray structure.  Also, you need to call rayorigin()
56 < *  yourself, which is normally for you by ray_trace().  The
57 < *  great thing is that ray_pqueue() will trace rays faster in
56 > *  yourself, which is normally called for you by ray_trace().  The
57 > *  benefit is that ray_pqueue() will trace rays faster in
58   *  proportion to the number of CPUs you have available on your
59   *  system.  If the ray queue is full before the call, ray_pqueue()
60   *  will block until a result is ready so it can queue this one.
61 < *  The global int ray_idle indicates the number of currently idle
61 > *  The global int ray_pnidle indicates the number of currently idle
62   *  children.  If you want to check for completed rays without blocking,
63   *  or get the results from rays that have been queued without
64   *  queuing any new ones, the ray_presult() call is for you:
# Line 71 | Line 73 | static const char      RCSid[] = "$Id$";
73   *  queue is completely empty.  A negative return value
74   *  indicates that a rendering process died.  If this
75   *  happens, ray_close(0) is automatically called to close
76 < *  all child processes, and ray_nprocs is set to zero.
76 > *  all child processes, and ray_pnprocs is set to zero.
77   *
78   *  If you just want to fill the ray queue without checking for
79 < *  results, check ray_idle and call ray_psend():
79 > *  results, check ray_pnidle and call ray_psend():
80   *
81 < *      while (ray_idle) {
81 > *      while (ray_pnidle) {
82   *              ( set up ray )
83   *              ray_psend(&myRay);
84   *      }
85   *
86 < *  The ray_presult() and/or ray_pqueue() functions may then be
87 < *  called to read back the results.
86 > *  Note that it is a fatal error to call ra_psend() when
87 > *  ray_pnidle is zero.  The ray_presult() and/or ray_pqueue()
88 > *  functions may be called subsequently to read back the results.
89   *
90   *  When you are done, you may call ray_pdone(1) to close
91   *  all child processes and clean up memory used by Radiance.
# Line 99 | Line 102 | static const char      RCSid[] = "$Id$";
102   *  If you just want to reap children so that you can alter the
103   *  rendering parameters without reloading the scene, use the
104   *  ray_pclose(0) and ray_popen(nproc) calls to close
105 < *  then restart the child processes.
105 > *  then restart the child processes after the changes are made.
106   *
107   *  Note:  These routines are written to coordinate with the
108   *  definitions in raycalls.c, and in fact depend on them.
109   *  If you want to trace a ray and get a result synchronously,
110   *  use the ray_trace() call to compute it in the parent process.
111 + *  This will not interfere with any subprocess calculations,
112 + *  but beware that a fatal error may end with a call to quit().
113   *
114   *  Note:  One of the advantages of using separate processes
115   *  is that it gives the calling program some immunity from
116   *  fatal rendering errors.  As discussed in raycalls.c,
117   *  Radiance tends to throw up its hands and exit at the
118   *  first sign of trouble, calling quit() to return control
119 < *  to the system.  Although you can avoid exit() with
119 > *  to the top level.  Although you can avoid exit() with
120   *  your own longjmp() in quit(), the cleanup afterwards
121   *  is always suspect.  Through the use of subprocesses,
122   *  we avoid this pitfall by closing the processes and
# Line 120 | Line 125 | static const char      RCSid[] = "$Id$";
125   *  of these calls, you can assume that the processes have
126   *  been cleaned up with a call to ray_close(), though you
127   *  will have to call ray_pdone() yourself if you want to
128 < *  free memory.  Obviously, you cannot continue rendering,
129 < *  but otherwise your process should not be compromised.
128 > *  free memory.  Obviously, you cannot continue rendering
129 > *  without risking further errors, but otherwise your
130 > *  process should not be compromised.
131   */
132  
133 < #include  "ray.h"
133 > #include <stdio.h>
134 > #include <sys/types.h>
135 > #include <sys/wait.h> /* XXX platform */
136  
137 + #include  "rtprocess.h"
138 + #include  "ray.h"
139 + #include  "ambient.h"
140   #include  "selcall.h"
141  
142   #ifndef RAYQLEN
143 < #define RAYQLEN         16              /* # rays to send at once */
143 > #define RAYQLEN         12              /* # rays to send at once */
144   #endif
145  
146   #ifndef MAX_RPROCS
# Line 142 | Line 153 | static const char      RCSid[] = "$Id$";
153  
154   extern char     *shm_boundary;          /* boundary of shared memory */
155  
156 < int             ray_nprocs = 0;         /* number of child processes */
157 < int             ray_idle = 0;           /* number of idle children */
156 > int             ray_pnprocs = 0;        /* number of child processes */
157 > int             ray_pnidle = 0;         /* number of idle children */
158  
159   static struct child_proc {
160          int     pid;                            /* child process id */
# Line 160 | Line 171 | static int     r_recv_next;            /* next receive ray placement
171  
172   #define sendq_full()    (r_send_next >= RAYQLEN)
173  
174 + static int ray_pflush(void);
175 + static void ray_pchild(int fd_in, int fd_out);
176  
177 < void
178 < ray_pinit(otnm, nproc)          /* initialize ray-tracing processes */
179 < char    *otnm;
180 < int     nproc;
177 >
178 > extern void
179 > ray_pinit(              /* initialize ray-tracing processes */
180 >        char    *otnm,
181 >        int     nproc
182 > )
183   {
184          if (nobjects > 0)               /* close old calculation */
185                  ray_pdone(0);
# Line 185 | Line 200 | int    nproc;
200  
201  
202   static int
203 < ray_pflush()                    /* send queued rays to idle children */
203 > ray_pflush(void)                        /* send queued rays to idle children */
204   {
205          int     nc, n, nw, i, sfirst;
206  
207 <        if ((ray_idle <= 0 | r_send_next <= 0))
207 >        if ((ray_pnidle <= 0) | (r_send_next <= 0))
208                  return(0);              /* nothing we can send */
209          
210          sfirst = 0;                     /* divvy up labor */
211 <        nc = ray_idle;
212 <        for (i = ray_nprocs; nc && i--; ) {
211 >        nc = ray_pnidle;
212 >        for (i = ray_pnprocs; nc && i--; ) {
213                  if (r_proc[i].npending > 0)
214                          continue;       /* child looks busy */
215                  n = (r_send_next - sfirst)/nc--;
# Line 210 | Line 225 | ray_pflush()                   /* send queued rays to idle children */
225                  while (n--)             /* record ray IDs */
226                          r_proc[i].rno[n] = r_queue[sfirst+n].rno;
227                  sfirst += r_proc[i].npending;
228 <                ray_idle--;             /* now she's busy */
228 >                ray_pnidle--;           /* now she's busy */
229          }
230          if (sfirst != r_send_next)
231                  error(CONSISTENCY, "code screwup in ray_pflush");
# Line 219 | Line 234 | ray_pflush()                   /* send queued rays to idle children */
234   }
235  
236  
237 < void
238 < ray_psend(r)                    /* add a ray to our send queue */
239 < RAY     *r;
237 > extern void
238 > ray_psend(                      /* add a ray to our send queue */
239 >        RAY     *r
240 > )
241   {
242          if (r == NULL)
243                  return;
# Line 229 | Line 245 | RAY    *r;
245          if (sendq_full() && ray_pflush() <= 0)
246                  error(INTERNAL, "ray_pflush failed in ray_psend");
247  
248 <        copystruct(&r_queue[r_send_next], r);
248 >        r_queue[r_send_next] = *r;
249          r_send_next++;
250   }
251  
252  
253 < int
254 < ray_pqueue(r)                   /* queue a ray for computation */
255 < RAY     *r;
253 > extern int
254 > ray_pqueue(                     /* queue a ray for computation */
255 >        RAY     *r
256 > )
257   {
258          if (r == NULL)
259                  return(0);
# Line 244 | Line 261 | RAY    *r;
261          if (sendq_full()) {
262                  RAY     mySend;
263                  int     rval;
264 <                copystruct(&mySend, r);
264 >                mySend = *r;
265                                          /* wait for a result */
266                  rval = ray_presult(r, 0);
267                                          /* put new ray in queue */
268 <                copystruct(&r_queue[r_send_next], &mySend);
268 >                r_queue[r_send_next] = mySend;
269                  r_send_next++;
270                  return(rval);           /* done */
271          }
272 <                                        /* add ray to send queue */
273 <        copystruct(&r_queue[r_send_next], r);
272 >                                        /* else add ray to send queue */
273 >        r_queue[r_send_next] = *r;
274          r_send_next++;
275                                          /* check for returned ray... */
276          if (r_recv_first >= r_recv_next)
277                  return(0);
278                                          /* ...one is sitting in queue */
279 <        copystruct(r, &r_queue[r_recv_first]);
279 >        *r = r_queue[r_recv_first];
280          r_recv_first++;
281          return(1);
282   }
283  
284  
285 < int
286 < ray_presult(r, poll)            /* check for a completed ray */
287 < RAY     *r;
288 < int     poll;
285 > extern int
286 > ray_presult(            /* check for a completed ray */
287 >        RAY     *r,
288 >        int     poll
289 > )
290   {
291          static struct timeval   tpoll;  /* zero timeval struct */
292          static fd_set   readset, errset;
# Line 279 | Line 297 | int    poll;
297                  return(0);
298                                          /* check queued results first */
299          if (r_recv_first < r_recv_next) {
300 <                copystruct(r, &r_queue[r_recv_first]);
300 >                *r = r_queue[r_recv_first];
301                  r_recv_first++;
302                  return(1);
303          }
304 <        n = ray_nprocs - ray_idle;      /* pending before flush? */
304 >        n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
305  
306          if (ray_pflush() < 0)           /* send new rays to process */
307                  return(-1);
# Line 291 | Line 309 | int    poll;
309          r_recv_first = r_recv_next = RAYQLEN;
310  
311          if (!poll)                      /* count newly sent unless polling */
312 <                n = ray_nprocs - ray_idle;
312 >                n = ray_pnprocs - ray_pnidle;
313          if (n <= 0)                     /* return if nothing to await */
314                  return(0);
315   getready:                               /* any children waiting for us? */
316 <        for (pn = ray_nprocs; pn--; )
316 >        for (pn = ray_pnprocs; pn--; )
317                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
318                                  FD_ISSET(r_proc[pn].fd_recv, &errset))
319                          break;
320                                          /* call select if we must */
321          if (pn < 0) {
322                  FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
323 <                for (pn = ray_nprocs; pn--; ) {
323 >                for (pn = ray_pnprocs; pn--; ) {
324                          if (r_proc[pn].npending > 0)
325                                  FD_SET(r_proc[pn].fd_recv, &readset);
326                          FD_SET(r_proc[pn].fd_recv, &errset);
# Line 338 | Line 356 | getready:                              /* any children waiting for us? */
356          if (n <= 0)
357                  FD_CLR(r_proc[pn].fd_recv, &errset);
358          r_proc[pn].npending = 0;
359 <        ray_idle++;
359 >        ray_pnidle++;
360                                          /* check for rendering errors */
361          if (!ok) {
362                  ray_pclose(0);          /* process died -- clean up */
# Line 354 | Line 372 | getready:                              /* any children waiting for us? */
372                  rp->slights = NULL;
373          }
374                                          /* return first ray received */
375 <        copystruct(r, &r_queue[r_recv_first]);
358 <        r_recv_first++;
375 >        *r = r_queue[r_recv_first++];
376          return(1);
377   }
378  
379  
380 < void
381 < ray_pdone(freall)               /* reap children and free data */
382 < int     freall;
380 > extern void
381 > ray_pdone(              /* reap children and free data */
382 >        int     freall
383 > )
384   {
385          ray_pclose(0);                  /* close child processes */
386  
# Line 375 | Line 393 | int    freall;
393  
394  
395   static void
396 < ray_pchild(fd_in, fd_out)       /* process rays (never returns) */
397 < int     fd_in;
398 < int     fd_out;
396 > ray_pchild(     /* process rays (never returns) */
397 >        int     fd_in,
398 >        int     fd_out
399 > )
400   {
401          int     n;
402          register int    i;
403                                          /* read each ray request set */
404          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
405                  int     n2;
406 <                if (n % sizeof(RAY))
406 >                if (n < sizeof(RAY))
407                          break;
389                n /= sizeof(RAY);
408                                          /* get smuggled set length */
409 <                n2 = r_queue[0].crtype - n;
409 >                n2 = sizeof(RAY)*r_queue[0].crtype - n;
410                  if (n2 < 0)
411                          error(INTERNAL, "buffer over-read in ray_pchild");
412                  if (n2 > 0) {           /* read the rest of the set */
413 <                        i = readbuf(fd_in, (char *)(r_queue+n),
414 <                                        sizeof(RAY)*n2);
397 <                        if (i != sizeof(RAY)*n2)
413 >                        i = readbuf(fd_in, (char *)r_queue + n, n2);
414 >                        if (i != n2)
415                                  break;
416                          n += n2;
417                  }
418 +                n /= sizeof(RAY);
419                                          /* evaluate rays */
420                  for (i = 0; i < n; i++) {
421                          r_queue[i].crtype = r_queue[i].rtype;
422                          r_queue[i].parent = NULL;
423                          r_queue[i].clipset = NULL;
424                          r_queue[i].slights = NULL;
407                        r_queue[i].revf = raytrace;
425                          samplendx++;
426                          rayclear(&r_queue[i]);
427                          rayvalue(&r_queue[i]);
# Line 421 | Line 438 | int    fd_out;
438   }
439  
440  
441 < void
442 < ray_popen(nadd)                 /* open the specified # processes */
443 < int     nadd;
441 > extern void
442 > ray_popen(                      /* open the specified # processes */
443 >        int     nadd
444 > )
445   {
446                                          /* check if our table has room */
447 <        if (ray_nprocs + nadd > MAX_NPROCS)
448 <                nadd = MAX_NPROCS - ray_nprocs;
447 >        if (ray_pnprocs + nadd > MAX_NPROCS)
448 >                nadd = MAX_NPROCS - ray_pnprocs;
449          if (nadd <= 0)
450                  return;
451 <        fflush(stderr);                 /* clear pending output */
452 <        fflush(stdout);
451 >        ambsync();                      /* load any new ambient values */
452 >        fflush(NULL);                   /* clear pending output */
453          while (nadd--) {                /* fork each new process */
454                  int     p0[2], p1[2];
455                  if (pipe(p0) < 0 || pipe(p1) < 0)
456                          error(SYSTEM, "cannot create pipe");
457 <                if ((r_proc[ray_nprocs].pid = fork()) == 0) {
457 >                if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
458                          int     pn;     /* close others' descriptors */
459 <                        for (pn = ray_nprocs; pn--; ) {
459 >                        for (pn = ray_pnprocs; pn--; ) {
460                                  close(r_proc[pn].fd_send);
461                                  close(r_proc[pn].fd_recv);
462                          }
# Line 446 | Line 464 | int    nadd;
464                                          /* following call never returns */
465                          ray_pchild(p1[0], p0[1]);
466                  }
467 <                if (r_proc[ray_nprocs].pid < 0)
467 >                if (r_proc[ray_pnprocs].pid < 0)
468                          error(SYSTEM, "cannot fork child process");
469                  close(p1[0]); close(p0[1]);
470 <                r_proc[ray_nprocs].fd_send = p1[1];
471 <                r_proc[ray_nprocs].fd_recv = p0[0];
472 <                r_proc[ray_nprocs].npending = 0;
473 <                ray_nprocs++;
474 <                ray_idle++;
470 >                /*
471 >                 * Close write stream on exec to avoid multiprocessing deadlock.
472 >                 * No use in read stream without it, so set flag there as well.
473 >                 */
474 >                fcntl(p1[1], F_SETFD, FD_CLOEXEC);
475 >                fcntl(p0[0], F_SETFD, FD_CLOEXEC);
476 >                r_proc[ray_pnprocs].fd_send = p1[1];
477 >                r_proc[ray_pnprocs].fd_recv = p0[0];
478 >                r_proc[ray_pnprocs].npending = 0;
479 >                ray_pnprocs++;
480 >                ray_pnidle++;
481          }
482   }
483  
484  
485 < void
486 < ray_pclose(nsub)                /* close one or more child processes */
487 < int     nsub;
485 > extern void
486 > ray_pclose(             /* close one or more child processes */
487 >        int     nsub
488 > )
489   {
490          static int      inclose = 0;
491          RAY     res;
# Line 469 | Line 494 | int    nsub;
494                  return;
495          inclose++;
496                                          /* check argument */
497 <        if ((nsub <= 0 | nsub > ray_nprocs))
498 <                nsub = ray_nprocs;
497 >        if ((nsub <= 0) | (nsub > ray_pnprocs))
498 >                nsub = ray_pnprocs;
499                                          /* clear our ray queue */
500          while (ray_presult(&res,0) > 0)
501                  ;
502                                          /* clean up children */
503          while (nsub--) {
504                  int     status;
505 <                ray_nprocs--;
506 <                close(r_proc[ray_nprocs].fd_recv);
507 <                close(r_proc[ray_nprocs].fd_send);
508 <                while (wait(&status) != r_proc[ray_nprocs].pid)
509 <                        ;
505 >                ray_pnprocs--;
506 >                close(r_proc[ray_pnprocs].fd_recv);
507 >                close(r_proc[ray_pnprocs].fd_send);
508 >                if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
509 >                        status = 127<<8;
510                  if (status) {
511                          sprintf(errmsg,
512                                  "rendering process %d exited with code %d",
513 <                                        r_proc[ray_nprocs].pid, status>>8);
513 >                                        r_proc[ray_pnprocs].pid, status>>8);
514                          error(WARNING, errmsg);
515                  }
516 <                ray_idle--;
516 >                ray_pnidle--;
517          }
518          inclose--;
519   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines