23 |
|
* The first step is opening one or more rendering processes |
24 |
|
* with a call to ray_pinit(oct, nproc). Before calling fork(), |
25 |
|
* ray_pinit() loads the octree and data structures into the |
26 |
< |
* caller's memory. This permits all sorts of queries that |
27 |
< |
* wouldn't be possible otherwise, without causing any real |
26 |
> |
* caller's memory, and ray_popen() synchronizes the ambient |
27 |
> |
* file, if any. Shared memory permits all sorts of queries |
28 |
> |
* that wouldn't be possible otherwise, without causing any real |
29 |
|
* memory overhead, since all the static data are shared |
30 |
|
* between processes. Rays are then traced using a simple |
31 |
|
* queuing mechanism, explained below. |
32 |
|
* |
33 |
< |
* The ray queue holds as many rays as there are rendering |
34 |
< |
* processes. Rays are queued and returned by a single |
33 |
> |
* The ray queue buffers RAYQLEN rays before sending to |
34 |
> |
* children, each of which may internally buffer RAYQLEN rays. |
35 |
> |
* |
36 |
> |
* Rays are queued and returned by a single |
37 |
|
* ray_pqueue() call. A ray_pqueue() return |
38 |
|
* value of 0 indicates that no rays are ready |
39 |
|
* and the queue is not yet full. A return value of 1 |
46 |
|
* myRay.rorg = ( ray origin point ) |
47 |
|
* myRay.rdir = ( normalized ray direction ) |
48 |
|
* myRay.rmax = ( maximum length, or zero for no limit ) |
49 |
< |
* rayorigin(&myRay, NULL, PRIMARY, 1.0); |
49 |
> |
* rayorigin(&myRay, PRIMARY, NULL, NULL); |
50 |
|
* myRay.rno = ( my personal ray identifier ) |
51 |
|
* if (ray_pqueue(&myRay) == 1) |
52 |
|
* { do something with results } |
108 |
|
* Note: These routines are written to coordinate with the |
109 |
|
* definitions in raycalls.c, and in fact depend on them. |
110 |
|
* If you want to trace a ray and get a result synchronously, |
111 |
< |
* use the ray_trace() call to compute it in the parent process |
111 |
> |
* use the ray_trace() call to compute it in the parent process. |
112 |
|
* This will not interfere with any subprocess calculations, |
113 |
|
* but beware that a fatal error may end with a call to quit(). |
114 |
|
* |
141 |
|
#include "selcall.h" |
142 |
|
|
143 |
|
#ifndef RAYQLEN |
144 |
< |
#define RAYQLEN 16 /* # rays to send at once */ |
144 |
> |
#define RAYQLEN 12 /* # rays to send at once */ |
145 |
|
#endif |
146 |
|
|
147 |
|
#ifndef MAX_RPROCS |
173 |
|
#define sendq_full() (r_send_next >= RAYQLEN) |
174 |
|
|
175 |
|
static int ray_pflush(void); |
176 |
< |
static void ray_pchild(int fd_in, int fd_out); |
176 |
> |
static void ray_pchild(int fd_in, int fd_out); |
177 |
|
|
178 |
|
|
179 |
|
extern void |
246 |
|
if (sendq_full() && ray_pflush() <= 0) |
247 |
|
error(INTERNAL, "ray_pflush failed in ray_psend"); |
248 |
|
|
249 |
< |
r_queue[r_send_next] = *r; |
247 |
< |
r_send_next++; |
249 |
> |
r_queue[r_send_next++] = *r; |
250 |
|
} |
251 |
|
|
252 |
|
|
265 |
|
/* wait for a result */ |
266 |
|
rval = ray_presult(r, 0); |
267 |
|
/* put new ray in queue */ |
268 |
< |
r_queue[r_send_next] = mySend; |
267 |
< |
r_send_next++; |
268 |
> |
r_queue[r_send_next++] = mySend; |
269 |
|
return(rval); /* done */ |
270 |
|
} |
271 |
< |
/* add ray to send queue */ |
272 |
< |
r_queue[r_send_next] = *r; |
272 |
< |
r_send_next++; |
271 |
> |
/* else add ray to send queue */ |
272 |
> |
r_queue[r_send_next++] = *r; |
273 |
|
/* check for returned ray... */ |
274 |
|
if (r_recv_first >= r_recv_next) |
275 |
|
return(0); |
276 |
|
/* ...one is sitting in queue */ |
277 |
< |
*r = r_queue[r_recv_first]; |
278 |
< |
r_recv_first++; |
277 |
> |
*r = r_queue[r_recv_first++]; |
278 |
|
return(1); |
279 |
|
} |
280 |
|
|
294 |
|
return(0); |
295 |
|
/* check queued results first */ |
296 |
|
if (r_recv_first < r_recv_next) { |
297 |
< |
*r = r_queue[r_recv_first]; |
299 |
< |
r_recv_first++; |
297 |
> |
*r = r_queue[r_recv_first++]; |
298 |
|
return(1); |
299 |
|
} |
300 |
|
n = ray_pnprocs - ray_pnidle; /* pending before flush? */ |
368 |
|
rp->slights = NULL; |
369 |
|
} |
370 |
|
/* return first ray received */ |
371 |
< |
*r = r_queue[r_recv_first]; |
374 |
< |
r_recv_first++; |
371 |
> |
*r = r_queue[r_recv_first++]; |
372 |
|
return(1); |
373 |
|
} |
374 |
|
|
396 |
|
{ |
397 |
|
int n; |
398 |
|
register int i; |
399 |
+ |
/* flag child process for quit() */ |
400 |
+ |
ray_pnprocs = -1; |
401 |
|
/* read each ray request set */ |
402 |
|
while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) { |
403 |
|
int n2; |
404 |
< |
if (n % sizeof(RAY)) |
404 |
> |
if (n < sizeof(RAY)) |
405 |
|
break; |
407 |
– |
n /= sizeof(RAY); |
406 |
|
/* get smuggled set length */ |
407 |
< |
n2 = r_queue[0].crtype - n; |
407 |
> |
n2 = sizeof(RAY)*r_queue[0].crtype - n; |
408 |
|
if (n2 < 0) |
409 |
|
error(INTERNAL, "buffer over-read in ray_pchild"); |
410 |
|
if (n2 > 0) { /* read the rest of the set */ |
411 |
< |
i = readbuf(fd_in, (char *)(r_queue+n), |
412 |
< |
sizeof(RAY)*n2); |
415 |
< |
if (i != sizeof(RAY)*n2) |
411 |
> |
i = readbuf(fd_in, (char *)r_queue + n, n2); |
412 |
> |
if (i != n2) |
413 |
|
break; |
414 |
|
n += n2; |
415 |
|
} |
416 |
+ |
n /= sizeof(RAY); |
417 |
|
/* evaluate rays */ |
418 |
|
for (i = 0; i < n; i++) { |
419 |
|
r_queue[i].crtype = r_queue[i].rtype; |
420 |
|
r_queue[i].parent = NULL; |
421 |
|
r_queue[i].clipset = NULL; |
422 |
|
r_queue[i].slights = NULL; |
425 |
– |
r_queue[i].revf = raytrace; |
423 |
|
samplendx++; |
424 |
|
rayclear(&r_queue[i]); |
425 |
|
rayvalue(&r_queue[i]); |
446 |
|
nadd = MAX_NPROCS - ray_pnprocs; |
447 |
|
if (nadd <= 0) |
448 |
|
return; |
449 |
< |
fflush(stderr); /* clear pending output */ |
450 |
< |
fflush(stdout); |
449 |
> |
ambsync(); /* load any new ambient values */ |
450 |
> |
fflush(NULL); /* clear pending output */ |
451 |
|
while (nadd--) { /* fork each new process */ |
452 |
|
int p0[2], p1[2]; |
453 |
|
if (pipe(p0) < 0 || pipe(p1) < 0) |
465 |
|
if (r_proc[ray_pnprocs].pid < 0) |
466 |
|
error(SYSTEM, "cannot fork child process"); |
467 |
|
close(p1[0]); close(p0[1]); |
468 |
+ |
/* |
469 |
+ |
* Close write stream on exec to avoid multiprocessing deadlock. |
470 |
+ |
* No use in read stream without it, so set flag there as well. |
471 |
+ |
*/ |
472 |
+ |
fcntl(p1[1], F_SETFD, FD_CLOEXEC); |
473 |
+ |
fcntl(p0[0], F_SETFD, FD_CLOEXEC); |
474 |
|
r_proc[ray_pnprocs].fd_send = p1[1]; |
475 |
|
r_proc[ray_pnprocs].fd_recv = p0[0]; |
476 |
|
r_proc[ray_pnprocs].npending = 0; |
503 |
|
ray_pnprocs--; |
504 |
|
close(r_proc[ray_pnprocs].fd_recv); |
505 |
|
close(r_proc[ray_pnprocs].fd_send); |
506 |
< |
while (wait(&status) != r_proc[ray_pnprocs].pid) |
507 |
< |
; |
506 |
> |
if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0) |
507 |
> |
status = 127<<8; |
508 |
|
if (status) { |
509 |
|
sprintf(errmsg, |
510 |
|
"rendering process %d exited with code %d", |
521 |
|
quit(ec) /* make sure exit is called */ |
522 |
|
int ec; |
523 |
|
{ |
524 |
+ |
if (ray_pnprocs > 0) /* close children if any */ |
525 |
+ |
ray_pclose(0); |
526 |
|
exit(ec); |
527 |
|
} |