13 |
|
* These calls are designed similarly to the ones in raycalls.c, |
14 |
|
* but allow for multiple rendering processes on the same host |
15 |
|
* machine. There is no sense in specifying more child processes |
16 |
< |
* than you have processors, but one child may help by allowing |
16 |
> |
* than you have processor cores, but one child may help by allowing |
17 |
|
* asynchronous ray computation in an interactive program, and |
18 |
|
* will protect the caller from fatal rendering errors. |
19 |
|
* |
20 |
< |
* You should first read and undrstand the header in raycalls.c, |
20 |
> |
* You should first read and understand the header in raycalls.c, |
21 |
|
* as some things are explained there that are not repated here. |
22 |
|
* |
23 |
|
* The first step is opening one or more rendering processes |
25 |
|
* ray_pinit() loads the octree and data structures into the |
26 |
|
* caller's memory, and ray_popen() synchronizes the ambient |
27 |
|
* file, if any. Shared memory permits all sorts of queries |
28 |
< |
* that wouldn't be possible otherwise, without causing any real |
28 |
> |
* that wouldn't be possible otherwise without causing any real |
29 |
|
* memory overhead, since all the static data are shared |
30 |
< |
* between processes. Rays are then traced using a simple |
30 |
> |
* between processes. Rays are traced using a simple |
31 |
|
* queuing mechanism, explained below. |
32 |
|
* |
33 |
|
* The ray queue buffers RAYQLEN rays before sending to |
34 |
< |
* children, each of which may internally buffer RAYQLEN rays. |
34 |
> |
* children, each of which may internally buffer RAYQLEN rays |
35 |
> |
* during evaluation. Rays are not returned in the order |
36 |
> |
* they are sent when multiple processes are open. |
37 |
|
* |
38 |
|
* Rays are queued and returned by a single |
39 |
|
* ray_pqueue() call. A ray_pqueue() return |
71 |
|
* |
72 |
|
* If the second argument is 1, the call won't block when |
73 |
|
* results aren't ready, but will immediately return 0. |
74 |
+ |
* (A special value of -1 returns 0 unless a ray is |
75 |
+ |
* ready in the queue and no system calls are needed.) |
76 |
|
* If the second argument is 0, the call will block |
77 |
|
* until a value is available, returning 0 only if the |
78 |
|
* queue is completely empty. A negative return value |
79 |
|
* indicates that a rendering process died. If this |
80 |
< |
* happens, ray_close(0) is automatically called to close |
80 |
> |
* happens, ray_pclose(0) is automatically called to close |
81 |
|
* all child processes, and ray_pnprocs is set to zero. |
82 |
|
* |
83 |
|
* If you just want to fill the ray queue without checking for |
97 |
|
* Any queued ray calculations will be awaited and discarded. |
98 |
|
* As with ray_done(), ray_pdone(0) hangs onto data files |
99 |
|
* and fonts that are likely to be used in subsequent renderings. |
100 |
< |
* Whether you want to bother cleaning up memory or not, you |
101 |
< |
* should at least call ray_pclose(0) to clean the child processes. |
100 |
> |
* Whether you need to clean up memory or not, you should |
101 |
> |
* at least call ray_pclose(0) to await the child processes. |
102 |
> |
* The caller should define a quit() function that calls |
103 |
> |
* ray_pclose(0) if ray_pnprocs > 0. |
104 |
|
* |
105 |
|
* Warning: You cannot affect any of the rendering processes |
106 |
|
* by changing global parameter values onece ray_pinit() has |
130 |
|
* returning a negative value from ray_pqueue() or |
131 |
|
* ray_presult(). If you get a negative value from either |
132 |
|
* of these calls, you can assume that the processes have |
133 |
< |
* been cleaned up with a call to ray_close(), though you |
133 |
> |
* been cleaned up with a call to ray_pclose(), though you |
134 |
|
* will have to call ray_pdone() yourself if you want to |
135 |
|
* free memory. Obviously, you cannot continue rendering |
136 |
|
* without risking further errors, but otherwise your |
137 |
|
* process should not be compromised. |
138 |
|
*/ |
139 |
|
|
134 |
– |
#include <stdio.h> |
135 |
– |
#include <sys/types.h> |
136 |
– |
#include <sys/wait.h> /* XXX platform */ |
137 |
– |
|
140 |
|
#include "rtprocess.h" |
141 |
|
#include "ray.h" |
142 |
|
#include "ambient.h" |
143 |
+ |
#include <sys/types.h> |
144 |
+ |
#include <sys/wait.h> |
145 |
|
#include "selcall.h" |
146 |
|
|
147 |
|
#ifndef RAYQLEN |
166 |
|
int fd_send; /* write to child here */ |
167 |
|
int fd_recv; /* read from child here */ |
168 |
|
int npending; /* # rays in process */ |
169 |
< |
unsigned long rno[RAYQLEN]; /* working on these rays */ |
169 |
> |
RNUMBER rno[RAYQLEN]; /* working on these rays */ |
170 |
|
} r_proc[MAX_NPROCS]; /* our child processes */ |
171 |
|
|
172 |
|
static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */ |
173 |
< |
static int r_send_next; /* next send ray placement */ |
174 |
< |
static int r_recv_first; /* position of first unreported ray */ |
175 |
< |
static int r_recv_next; /* next receive ray placement */ |
173 |
> |
static int r_send_next = 0; /* next send ray placement */ |
174 |
> |
static int r_recv_first = RAYQLEN; /* position of first unreported ray */ |
175 |
> |
static int r_recv_next = RAYQLEN; /* next received ray placement */ |
176 |
|
|
177 |
|
#define sendq_full() (r_send_next >= RAYQLEN) |
178 |
|
|
180 |
|
static void ray_pchild(int fd_in, int fd_out); |
181 |
|
|
182 |
|
|
183 |
< |
extern void |
183 |
> |
void |
184 |
|
ray_pinit( /* initialize ray-tracing processes */ |
185 |
|
char *otnm, |
186 |
|
int nproc |
191 |
|
|
192 |
|
ray_init(otnm); /* load the shared scene */ |
193 |
|
|
190 |
– |
preload_objs(); /* preload auxiliary data */ |
191 |
– |
|
192 |
– |
/* set shared memory boundary */ |
193 |
– |
shm_boundary = (char *)malloc(16); |
194 |
– |
strcpy(shm_boundary, "SHM_BOUNDARY"); |
195 |
– |
|
196 |
– |
r_send_next = 0; /* set up queue */ |
197 |
– |
r_recv_first = r_recv_next = RAYQLEN; |
198 |
– |
|
194 |
|
ray_popen(nproc); /* fork children */ |
195 |
|
} |
196 |
|
|
224 |
|
ray_pnidle--; /* now she's busy */ |
225 |
|
} |
226 |
|
if (sfirst != r_send_next) |
227 |
< |
error(CONSISTENCY, "code screwup in ray_pflush"); |
227 |
> |
error(CONSISTENCY, "code screwup in ray_pflush()"); |
228 |
|
r_send_next = 0; |
229 |
|
return(sfirst); /* return total # sent */ |
230 |
|
} |
231 |
|
|
232 |
|
|
233 |
< |
extern void |
233 |
> |
void |
234 |
|
ray_psend( /* add a ray to our send queue */ |
235 |
|
RAY *r |
236 |
|
) |
239 |
|
return; |
240 |
|
/* flush output if necessary */ |
241 |
|
if (sendq_full() && ray_pflush() <= 0) |
242 |
< |
error(INTERNAL, "ray_pflush failed in ray_psend"); |
242 |
> |
error(INTERNAL, "ray_pflush failed in ray_psend()"); |
243 |
|
|
244 |
|
r_queue[r_send_next++] = *r; |
245 |
|
} |
246 |
|
|
247 |
|
|
248 |
< |
extern int |
248 |
> |
int |
249 |
|
ray_pqueue( /* queue a ray for computation */ |
250 |
|
RAY *r |
251 |
|
) |
254 |
|
return(0); |
255 |
|
/* check for full send queue */ |
256 |
|
if (sendq_full()) { |
257 |
< |
RAY mySend; |
263 |
< |
int rval; |
264 |
< |
mySend = *r; |
257 |
> |
RAY mySend = *r; |
258 |
|
/* wait for a result */ |
259 |
< |
rval = ray_presult(r, 0); |
259 |
> |
if (ray_presult(r, 0) <= 0) |
260 |
> |
return(-1); |
261 |
|
/* put new ray in queue */ |
262 |
|
r_queue[r_send_next++] = mySend; |
263 |
< |
return(rval); /* done */ |
263 |
> |
/* XXX r_send_next may now be > RAYQLEN */ |
264 |
> |
return(1); |
265 |
|
} |
266 |
|
/* else add ray to send queue */ |
267 |
|
r_queue[r_send_next++] = *r; |
274 |
|
} |
275 |
|
|
276 |
|
|
277 |
< |
extern int |
277 |
> |
int |
278 |
|
ray_presult( /* check for a completed ray */ |
279 |
|
RAY *r, |
280 |
|
int poll |
292 |
|
*r = r_queue[r_recv_first++]; |
293 |
|
return(1); |
294 |
|
} |
295 |
+ |
if (poll < 0) /* immediate polling mode? */ |
296 |
+ |
return(0); |
297 |
+ |
|
298 |
|
n = ray_pnprocs - ray_pnidle; /* pending before flush? */ |
299 |
|
|
300 |
|
if (ray_pflush() < 0) /* send new rays to process */ |
306 |
|
n = ray_pnprocs - ray_pnidle; |
307 |
|
if (n <= 0) /* return if nothing to await */ |
308 |
|
return(0); |
309 |
+ |
if (!poll && ray_pnprocs == 1) /* one process -> skip select() */ |
310 |
+ |
FD_SET(r_proc[0].fd_recv, &readset); |
311 |
+ |
|
312 |
|
getready: /* any children waiting for us? */ |
313 |
|
for (pn = ray_pnprocs; pn--; ) |
314 |
|
if (FD_ISSET(r_proc[pn].fd_recv, &readset) || |
315 |
|
FD_ISSET(r_proc[pn].fd_recv, &errset)) |
316 |
|
break; |
317 |
< |
/* call select if we must */ |
317 |
> |
/* call select() if we must */ |
318 |
|
if (pn < 0) { |
319 |
|
FD_ZERO(&readset); FD_ZERO(&errset); n = 0; |
320 |
|
for (pn = ray_pnprocs; pn--; ) { |
329 |
|
poll ? &tpoll : (struct timeval *)NULL)) < 0) |
330 |
|
if (errno != EINTR) { |
331 |
|
error(WARNING, |
332 |
< |
"select call failed in ray_presult"); |
332 |
> |
"select call failed in ray_presult()"); |
333 |
|
ray_pclose(0); |
334 |
|
return(-1); |
335 |
|
} |
374 |
|
} |
375 |
|
|
376 |
|
|
377 |
< |
extern void |
377 |
> |
void |
378 |
|
ray_pdone( /* reap children and free data */ |
379 |
|
int freall |
380 |
|
) |
385 |
|
free((void *)shm_boundary); |
386 |
|
shm_boundary = NULL; |
387 |
|
} |
388 |
+ |
|
389 |
|
ray_done(freall); /* free rendering data */ |
390 |
|
} |
391 |
|
|
408 |
|
/* get smuggled set length */ |
409 |
|
n2 = sizeof(RAY)*r_queue[0].crtype - n; |
410 |
|
if (n2 < 0) |
411 |
< |
error(INTERNAL, "buffer over-read in ray_pchild"); |
411 |
> |
error(INTERNAL, "buffer over-read in ray_pchild()"); |
412 |
|
if (n2 > 0) { /* read the rest of the set */ |
413 |
|
i = readbuf(fd_in, (char *)r_queue + n, n2); |
414 |
|
if (i != n2) |
422 |
|
r_queue[i].parent = NULL; |
423 |
|
r_queue[i].clipset = NULL; |
424 |
|
r_queue[i].slights = NULL; |
425 |
+ |
r_queue[i].rlvl = 0; |
426 |
|
samplendx++; |
427 |
|
rayclear(&r_queue[i]); |
428 |
|
rayvalue(&r_queue[i]); |
430 |
|
/* write back our results */ |
431 |
|
i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n); |
432 |
|
if (i != sizeof(RAY)*n) |
433 |
< |
error(SYSTEM, "write error in ray_pchild"); |
433 |
> |
error(SYSTEM, "write error in ray_pchild()"); |
434 |
|
} |
435 |
|
if (n) |
436 |
< |
error(SYSTEM, "read error in ray_pchild"); |
436 |
> |
error(SYSTEM, "read error in ray_pchild()"); |
437 |
|
ambsync(); |
438 |
|
quit(0); /* normal exit */ |
439 |
|
} |
440 |
|
|
441 |
|
|
442 |
< |
extern void |
442 |
> |
void |
443 |
|
ray_popen( /* open the specified # processes */ |
444 |
|
int nadd |
445 |
|
) |
450 |
|
if (nadd <= 0) |
451 |
|
return; |
452 |
|
ambsync(); /* load any new ambient values */ |
453 |
+ |
if (shm_boundary == NULL) { /* first child process? */ |
454 |
+ |
preload_objs(); /* preload auxiliary data */ |
455 |
+ |
/* set shared memory boundary */ |
456 |
+ |
shm_boundary = (char *)malloc(16); |
457 |
+ |
strcpy(shm_boundary, "SHM_BOUNDARY"); |
458 |
+ |
} |
459 |
|
fflush(NULL); /* clear pending output */ |
460 |
|
while (nadd--) { /* fork each new process */ |
461 |
|
int p0[2], p1[2]; |
468 |
|
close(r_proc[pn].fd_recv); |
469 |
|
} |
470 |
|
close(p0[0]); close(p1[1]); |
471 |
+ |
close(0); /* don't share stdin */ |
472 |
|
/* following call never returns */ |
473 |
|
ray_pchild(p1[0], p0[1]); |
474 |
|
} |
490 |
|
} |
491 |
|
|
492 |
|
|
493 |
< |
extern void |
493 |
> |
void |
494 |
|
ray_pclose( /* close one or more child processes */ |
495 |
|
int nsub |
496 |
|
) |
507 |
|
/* clear our ray queue */ |
508 |
|
while (ray_presult(&res,0) > 0) |
509 |
|
; |
510 |
+ |
r_send_next = 0; /* hard reset in case of error */ |
511 |
+ |
r_recv_first = r_recv_next = RAYQLEN; |
512 |
|
/* clean up children */ |
513 |
|
while (nsub--) { |
514 |
|
int status; |
515 |
|
ray_pnprocs--; |
504 |
– |
close(r_proc[ray_pnprocs].fd_recv); |
516 |
|
close(r_proc[ray_pnprocs].fd_send); |
517 |
|
if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0) |
518 |
|
status = 127<<8; |
519 |
+ |
close(r_proc[ray_pnprocs].fd_recv); |
520 |
|
if (status) { |
521 |
|
sprintf(errmsg, |
522 |
|
"rendering process %d exited with code %d", |
526 |
|
ray_pnidle--; |
527 |
|
} |
528 |
|
inclose--; |
517 |
– |
} |
518 |
– |
|
519 |
– |
|
520 |
– |
void |
521 |
– |
quit(ec) /* make sure exit is called */ |
522 |
– |
int ec; |
523 |
– |
{ |
524 |
– |
if (ray_pnprocs > 0) /* close children if any */ |
525 |
– |
ray_pclose(0); |
526 |
– |
exit(ec); |
529 |
|
} |