13 |
|
* These calls are designed similarly to the ones in raycalls.c, |
14 |
|
* but allow for multiple rendering processes on the same host |
15 |
|
* machine. There is no sense in specifying more child processes |
16 |
< |
* than you have processors, but one child may help by allowing |
16 |
> |
* than you have processor cores, but one child may help by allowing |
17 |
|
* asynchronous ray computation in an interactive program, and |
18 |
|
* will protect the caller from fatal rendering errors. |
19 |
|
* |
20 |
< |
* You should first read and undrstand the header in raycalls.c, |
20 |
> |
* You should first read and understand the header in raycalls.c, |
21 |
|
* as some things are explained there that are not repated here. |
22 |
|
* |
23 |
|
* The first step is opening one or more rendering processes |
24 |
|
* with a call to ray_pinit(oct, nproc). Before calling fork(), |
25 |
|
* ray_pinit() loads the octree and data structures into the |
26 |
< |
* caller's memory. This permits all sorts of queries that |
27 |
< |
* wouldn't be possible otherwise, without causing any real |
26 |
> |
* caller's memory, and ray_popen() synchronizes the ambient |
27 |
> |
* file, if any. Shared memory permits all sorts of queries |
28 |
> |
* that wouldn't be possible otherwise without causing any real |
29 |
|
* memory overhead, since all the static data are shared |
30 |
< |
* between processes. Rays are then traced using a simple |
30 |
> |
* between processes. Rays are traced using a simple |
31 |
|
* queuing mechanism, explained below. |
32 |
|
* |
33 |
< |
* The ray queue holds as many rays as there are rendering |
34 |
< |
* processes. Rays are queued and returned by a single |
33 |
> |
* The ray queue buffers RAYQLEN rays before sending to |
34 |
> |
* children, each of which may internally buffer RAYQLEN rays |
35 |
> |
* during evaluation. Rays are not returned in the order |
36 |
> |
* they are sent when multiple processes are open. |
37 |
> |
* |
38 |
> |
* Rays are queued and returned by a single |
39 |
|
* ray_pqueue() call. A ray_pqueue() return |
40 |
|
* value of 0 indicates that no rays are ready |
41 |
|
* and the queue is not yet full. A return value of 1 |
48 |
|
* myRay.rorg = ( ray origin point ) |
49 |
|
* myRay.rdir = ( normalized ray direction ) |
50 |
|
* myRay.rmax = ( maximum length, or zero for no limit ) |
51 |
< |
* rayorigin(&myRay, NULL, PRIMARY, 1.0); |
51 |
> |
* rayorigin(&myRay, PRIMARY, NULL, NULL); |
52 |
|
* myRay.rno = ( my personal ray identifier ) |
53 |
|
* if (ray_pqueue(&myRay) == 1) |
54 |
|
* { do something with results } |
56 |
|
* Note the differences between this and the simpler ray_trace() |
57 |
|
* call. In particular, the call may or may not return a value |
58 |
|
* in the passed ray structure. Also, you need to call rayorigin() |
59 |
< |
* yourself, which is normally for you by ray_trace(). The |
60 |
< |
* great thing is that ray_pqueue() will trace rays faster in |
59 |
> |
* yourself, which is normally called for you by ray_trace(). The |
60 |
> |
* benefit is that ray_pqueue() will trace rays faster in |
61 |
|
* proportion to the number of CPUs you have available on your |
62 |
|
* system. If the ray queue is full before the call, ray_pqueue() |
63 |
|
* will block until a result is ready so it can queue this one. |
73 |
|
* results aren't ready, but will immediately return 0. |
74 |
|
* If the second argument is 0, the call will block |
75 |
|
* until a value is available, returning 0 only if the |
76 |
< |
* queue is completely empty. A negative return value |
76 |
> |
* queue is completely empty. Setting the second argument |
77 |
> |
* to -1 returns 0 unless a ray is ready in the queue and |
78 |
> |
* no system calls are needed. A negative return value |
79 |
|
* indicates that a rendering process died. If this |
80 |
< |
* happens, ray_close(0) is automatically called to close |
80 |
> |
* happens, ray_pclose(0) is automatically called to close |
81 |
|
* all child processes, and ray_pnprocs is set to zero. |
82 |
|
* |
83 |
|
* If you just want to fill the ray queue without checking for |
88 |
|
* ray_psend(&myRay); |
89 |
|
* } |
90 |
|
* |
91 |
< |
* The ray_presult() and/or ray_pqueue() functions may then be |
92 |
< |
* called to read back the results. |
91 |
> |
* Note that it is a mistake to call ra_psend() when |
92 |
> |
* ray_pnidle is zero, and nothing will be sent in |
93 |
> |
* this case. Otherwise, the ray_presult() and/or ray_pqueue() |
94 |
> |
* functions may be called subsequently to read back the results |
95 |
> |
* of rays queued by ray_psend(). |
96 |
|
* |
97 |
|
* When you are done, you may call ray_pdone(1) to close |
98 |
|
* all child processes and clean up memory used by Radiance. |
99 |
|
* Any queued ray calculations will be awaited and discarded. |
100 |
|
* As with ray_done(), ray_pdone(0) hangs onto data files |
101 |
|
* and fonts that are likely to be used in subsequent renderings. |
102 |
< |
* Whether you want to bother cleaning up memory or not, you |
103 |
< |
* should at least call ray_pclose(0) to clean the child processes. |
102 |
> |
* Whether you need to clean up memory or not, you should |
103 |
> |
* at least call ray_pclose(0) to await the child processes. |
104 |
> |
* The caller should define a quit() function that calls |
105 |
> |
* ray_pclose(0) if ray_pnprocs > 0. |
106 |
|
* |
107 |
|
* Warning: You cannot affect any of the rendering processes |
108 |
|
* by changing global parameter values onece ray_pinit() has |
111 |
|
* If you just want to reap children so that you can alter the |
112 |
|
* rendering parameters without reloading the scene, use the |
113 |
|
* ray_pclose(0) and ray_popen(nproc) calls to close |
114 |
< |
* then restart the child processes. |
114 |
> |
* then restart the child processes after the changes are made. |
115 |
|
* |
116 |
|
* Note: These routines are written to coordinate with the |
117 |
|
* definitions in raycalls.c, and in fact depend on them. |
118 |
|
* If you want to trace a ray and get a result synchronously, |
119 |
|
* use the ray_trace() call to compute it in the parent process. |
120 |
+ |
* This will not interfere with any subprocess calculations, |
121 |
+ |
* but beware that a fatal error may end with a call to quit(). |
122 |
|
* |
123 |
|
* Note: One of the advantages of using separate processes |
124 |
|
* is that it gives the calling program some immunity from |
125 |
|
* fatal rendering errors. As discussed in raycalls.c, |
126 |
|
* Radiance tends to throw up its hands and exit at the |
127 |
|
* first sign of trouble, calling quit() to return control |
128 |
< |
* to the system. Although you can avoid exit() with |
128 |
> |
* to the top level. Although you can avoid exit() with |
129 |
|
* your own longjmp() in quit(), the cleanup afterwards |
130 |
|
* is always suspect. Through the use of subprocesses, |
131 |
|
* we avoid this pitfall by closing the processes and |
132 |
|
* returning a negative value from ray_pqueue() or |
133 |
|
* ray_presult(). If you get a negative value from either |
134 |
|
* of these calls, you can assume that the processes have |
135 |
< |
* been cleaned up with a call to ray_close(), though you |
135 |
> |
* been cleaned up with a call to ray_pclose(), though you |
136 |
|
* will have to call ray_pdone() yourself if you want to |
137 |
< |
* free memory. Obviously, you cannot continue rendering, |
138 |
< |
* but otherwise your process should not be compromised. |
137 |
> |
* free memory. Obviously, you cannot continue rendering |
138 |
> |
* without risking further errors, but otherwise your |
139 |
> |
* process should not be compromised. |
140 |
|
*/ |
141 |
|
|
127 |
– |
#include <stdio.h> |
128 |
– |
#include <sys/types.h> |
129 |
– |
#include <sys/wait.h> /* XXX platform */ |
130 |
– |
|
142 |
|
#include "rtprocess.h" |
143 |
|
#include "ray.h" |
144 |
|
#include "ambient.h" |
145 |
+ |
#include <sys/types.h> |
146 |
+ |
#include <sys/wait.h> |
147 |
|
#include "selcall.h" |
148 |
|
|
149 |
|
#ifndef RAYQLEN |
150 |
< |
#define RAYQLEN 16 /* # rays to send at once */ |
150 |
> |
#define RAYQLEN 24 /* # rays to send at once */ |
151 |
|
#endif |
152 |
|
|
153 |
|
#ifndef MAX_RPROCS |
164 |
|
int ray_pnidle = 0; /* number of idle children */ |
165 |
|
|
166 |
|
static struct child_proc { |
167 |
< |
int pid; /* child process id */ |
167 |
> |
RT_PID pid; /* child process id */ |
168 |
|
int fd_send; /* write to child here */ |
169 |
|
int fd_recv; /* read from child here */ |
170 |
|
int npending; /* # rays in process */ |
171 |
< |
unsigned long rno[RAYQLEN]; /* working on these rays */ |
171 |
> |
RNUMBER rno[RAYQLEN]; /* working on these rays */ |
172 |
|
} r_proc[MAX_NPROCS]; /* our child processes */ |
173 |
|
|
174 |
|
static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */ |
175 |
< |
static int r_send_next; /* next send ray placement */ |
176 |
< |
static int r_recv_first; /* position of first unreported ray */ |
177 |
< |
static int r_recv_next; /* next receive ray placement */ |
175 |
> |
static int r_send_next = 0; /* next send ray placement */ |
176 |
> |
static int r_recv_first = RAYQLEN; /* position of first unreported ray */ |
177 |
> |
static int r_recv_next = RAYQLEN; /* next received ray placement */ |
178 |
|
|
179 |
+ |
static int samplestep = 1; /* sample step size */ |
180 |
+ |
|
181 |
|
#define sendq_full() (r_send_next >= RAYQLEN) |
182 |
|
|
183 |
|
static int ray_pflush(void); |
184 |
< |
static void ray_pchild(int fd_in, int fd_out); |
184 |
> |
static void ray_pchild(int fd_in, int fd_out); |
185 |
|
|
186 |
|
|
187 |
< |
extern void |
187 |
> |
void |
188 |
|
ray_pinit( /* initialize ray-tracing processes */ |
189 |
|
char *otnm, |
190 |
|
int nproc |
195 |
|
|
196 |
|
ray_init(otnm); /* load the shared scene */ |
197 |
|
|
183 |
– |
preload_objs(); /* preload auxiliary data */ |
184 |
– |
|
185 |
– |
/* set shared memory boundary */ |
186 |
– |
shm_boundary = (char *)malloc(16); |
187 |
– |
strcpy(shm_boundary, "SHM_BOUNDARY"); |
188 |
– |
|
189 |
– |
r_send_next = 0; /* set up queue */ |
190 |
– |
r_recv_first = r_recv_next = RAYQLEN; |
191 |
– |
|
198 |
|
ray_popen(nproc); /* fork children */ |
199 |
|
} |
200 |
|
|
212 |
|
for (i = ray_pnprocs; nc && i--; ) { |
213 |
|
if (r_proc[i].npending > 0) |
214 |
|
continue; /* child looks busy */ |
215 |
< |
n = (r_send_next - sfirst)/nc--; |
215 |
> |
n = (r_send_next - sfirst) / nc--; |
216 |
|
if (!n) |
217 |
|
continue; |
218 |
|
/* smuggle set size in crtype */ |
228 |
|
ray_pnidle--; /* now she's busy */ |
229 |
|
} |
230 |
|
if (sfirst != r_send_next) |
231 |
< |
error(CONSISTENCY, "code screwup in ray_pflush"); |
231 |
> |
error(CONSISTENCY, "code screwup in ray_pflush()"); |
232 |
|
r_send_next = 0; |
233 |
|
return(sfirst); /* return total # sent */ |
234 |
|
} |
235 |
|
|
236 |
|
|
237 |
< |
extern void |
237 |
> |
int |
238 |
|
ray_psend( /* add a ray to our send queue */ |
239 |
|
RAY *r |
240 |
|
) |
241 |
|
{ |
242 |
< |
if (r == NULL) |
243 |
< |
return; |
242 |
> |
int rv; |
243 |
> |
|
244 |
> |
if ((r == NULL) | (ray_pnidle <= 0)) |
245 |
> |
return(0); |
246 |
|
/* flush output if necessary */ |
247 |
< |
if (sendq_full() && ray_pflush() <= 0) |
248 |
< |
error(INTERNAL, "ray_pflush failed in ray_psend"); |
247 |
> |
if (sendq_full() && (rv = ray_pflush()) <= 0) |
248 |
> |
return(rv); |
249 |
|
|
250 |
< |
r_queue[r_send_next] = *r; |
251 |
< |
r_send_next++; |
250 |
> |
r_queue[r_send_next++] = *r; |
251 |
> |
return(1); |
252 |
|
} |
253 |
|
|
254 |
|
|
255 |
< |
extern int |
255 |
> |
int |
256 |
|
ray_pqueue( /* queue a ray for computation */ |
257 |
|
RAY *r |
258 |
|
) |
261 |
|
return(0); |
262 |
|
/* check for full send queue */ |
263 |
|
if (sendq_full()) { |
264 |
< |
RAY mySend; |
257 |
< |
int rval; |
258 |
< |
mySend = *r; |
264 |
> |
RAY mySend = *r; |
265 |
|
/* wait for a result */ |
266 |
< |
rval = ray_presult(r, 0); |
266 |
> |
if (ray_presult(r, 0) <= 0) |
267 |
> |
return(-1); |
268 |
|
/* put new ray in queue */ |
269 |
< |
r_queue[r_send_next] = mySend; |
270 |
< |
r_send_next++; |
271 |
< |
return(rval); /* done */ |
269 |
> |
r_queue[r_send_next++] = mySend; |
270 |
> |
|
271 |
> |
return(1); |
272 |
|
} |
273 |
< |
/* add ray to send queue */ |
274 |
< |
r_queue[r_send_next] = *r; |
268 |
< |
r_send_next++; |
273 |
> |
/* else add ray to send queue */ |
274 |
> |
r_queue[r_send_next++] = *r; |
275 |
|
/* check for returned ray... */ |
276 |
|
if (r_recv_first >= r_recv_next) |
277 |
|
return(0); |
278 |
|
/* ...one is sitting in queue */ |
279 |
< |
*r = r_queue[r_recv_first]; |
274 |
< |
r_recv_first++; |
279 |
> |
*r = r_queue[r_recv_first++]; |
280 |
|
return(1); |
281 |
|
} |
282 |
|
|
283 |
|
|
284 |
< |
extern int |
284 |
> |
int |
285 |
|
ray_presult( /* check for a completed ray */ |
286 |
|
RAY *r, |
287 |
|
int poll |
290 |
|
static struct timeval tpoll; /* zero timeval struct */ |
291 |
|
static fd_set readset, errset; |
292 |
|
int n, ok; |
293 |
< |
register int pn; |
293 |
> |
int pn; |
294 |
|
|
295 |
|
if (r == NULL) |
296 |
|
return(0); |
297 |
|
/* check queued results first */ |
298 |
|
if (r_recv_first < r_recv_next) { |
299 |
< |
*r = r_queue[r_recv_first]; |
295 |
< |
r_recv_first++; |
299 |
> |
*r = r_queue[r_recv_first++]; |
300 |
|
return(1); |
301 |
|
} |
302 |
+ |
if (poll < 0) /* immediate polling mode? */ |
303 |
+ |
return(0); |
304 |
+ |
|
305 |
|
n = ray_pnprocs - ray_pnidle; /* pending before flush? */ |
306 |
|
|
307 |
|
if (ray_pflush() < 0) /* send new rays to process */ |
313 |
|
n = ray_pnprocs - ray_pnidle; |
314 |
|
if (n <= 0) /* return if nothing to await */ |
315 |
|
return(0); |
316 |
+ |
if (!poll && ray_pnprocs == 1) /* one process -> skip select() */ |
317 |
+ |
FD_SET(r_proc[0].fd_recv, &readset); |
318 |
+ |
|
319 |
|
getready: /* any children waiting for us? */ |
320 |
|
for (pn = ray_pnprocs; pn--; ) |
321 |
|
if (FD_ISSET(r_proc[pn].fd_recv, &readset) || |
322 |
|
FD_ISSET(r_proc[pn].fd_recv, &errset)) |
323 |
|
break; |
324 |
< |
/* call select if we must */ |
324 |
> |
/* call select() if we must */ |
325 |
|
if (pn < 0) { |
326 |
|
FD_ZERO(&readset); FD_ZERO(&errset); n = 0; |
327 |
|
for (pn = ray_pnprocs; pn--; ) { |
336 |
|
poll ? &tpoll : (struct timeval *)NULL)) < 0) |
337 |
|
if (errno != EINTR) { |
338 |
|
error(WARNING, |
339 |
< |
"select call failed in ray_presult"); |
339 |
> |
"select call failed in ray_presult()"); |
340 |
|
ray_pclose(0); |
341 |
|
return(-1); |
342 |
|
} |
368 |
|
} |
369 |
|
/* preen returned rays */ |
370 |
|
for (n = r_recv_next - r_recv_first; n--; ) { |
371 |
< |
register RAY *rp = &r_queue[r_recv_first + n]; |
371 |
> |
RAY *rp = &r_queue[r_recv_first + n]; |
372 |
|
rp->rno = r_proc[pn].rno[n]; |
373 |
|
rp->parent = NULL; |
374 |
|
rp->newcset = rp->clipset = NULL; |
376 |
|
rp->slights = NULL; |
377 |
|
} |
378 |
|
/* return first ray received */ |
379 |
< |
*r = r_queue[r_recv_first]; |
370 |
< |
r_recv_first++; |
379 |
> |
*r = r_queue[r_recv_first++]; |
380 |
|
return(1); |
381 |
|
} |
382 |
|
|
383 |
|
|
384 |
< |
extern void |
384 |
> |
void |
385 |
|
ray_pdone( /* reap children and free data */ |
386 |
|
int freall |
387 |
|
) |
392 |
|
free((void *)shm_boundary); |
393 |
|
shm_boundary = NULL; |
394 |
|
} |
395 |
+ |
|
396 |
|
ray_done(freall); /* free rendering data */ |
397 |
|
} |
398 |
|
|
404 |
|
) |
405 |
|
{ |
406 |
|
int n; |
407 |
< |
register int i; |
407 |
> |
int i; |
408 |
> |
/* flag child process for quit() */ |
409 |
> |
ray_pnprocs = -1; |
410 |
|
/* read each ray request set */ |
411 |
|
while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) { |
412 |
|
int n2; |
413 |
< |
if (n % sizeof(RAY)) |
413 |
> |
if (n < sizeof(RAY)) |
414 |
|
break; |
403 |
– |
n /= sizeof(RAY); |
415 |
|
/* get smuggled set length */ |
416 |
< |
n2 = r_queue[0].crtype - n; |
416 |
> |
n2 = sizeof(RAY)*r_queue[0].crtype - n; |
417 |
|
if (n2 < 0) |
418 |
< |
error(INTERNAL, "buffer over-read in ray_pchild"); |
418 |
> |
error(INTERNAL, "buffer over-read in ray_pchild()"); |
419 |
|
if (n2 > 0) { /* read the rest of the set */ |
420 |
< |
i = readbuf(fd_in, (char *)(r_queue+n), |
421 |
< |
sizeof(RAY)*n2); |
411 |
< |
if (i != sizeof(RAY)*n2) |
420 |
> |
i = readbuf(fd_in, (char *)r_queue + n, n2); |
421 |
> |
if (i != n2) |
422 |
|
break; |
423 |
|
n += n2; |
424 |
|
} |
425 |
+ |
n /= sizeof(RAY); |
426 |
|
/* evaluate rays */ |
427 |
|
for (i = 0; i < n; i++) { |
428 |
|
r_queue[i].crtype = r_queue[i].rtype; |
429 |
|
r_queue[i].parent = NULL; |
430 |
|
r_queue[i].clipset = NULL; |
431 |
|
r_queue[i].slights = NULL; |
432 |
< |
r_queue[i].revf = raytrace; |
433 |
< |
samplendx++; |
432 |
> |
r_queue[i].rlvl = 0; |
433 |
> |
samplendx += samplestep; |
434 |
|
rayclear(&r_queue[i]); |
435 |
|
rayvalue(&r_queue[i]); |
436 |
|
} |
437 |
|
/* write back our results */ |
438 |
|
i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n); |
439 |
|
if (i != sizeof(RAY)*n) |
440 |
< |
error(SYSTEM, "write error in ray_pchild"); |
440 |
> |
error(SYSTEM, "write error in ray_pchild()"); |
441 |
|
} |
442 |
|
if (n) |
443 |
< |
error(SYSTEM, "read error in ray_pchild"); |
443 |
> |
error(SYSTEM, "read error in ray_pchild()"); |
444 |
|
ambsync(); |
445 |
|
quit(0); /* normal exit */ |
446 |
|
} |
447 |
|
|
448 |
|
|
449 |
< |
extern void |
449 |
> |
void |
450 |
|
ray_popen( /* open the specified # processes */ |
451 |
|
int nadd |
452 |
|
) |
456 |
|
nadd = MAX_NPROCS - ray_pnprocs; |
457 |
|
if (nadd <= 0) |
458 |
|
return; |
459 |
< |
fflush(stderr); /* clear pending output */ |
460 |
< |
fflush(stdout); |
459 |
> |
ambsync(); /* load any new ambient values */ |
460 |
> |
if (shm_boundary == NULL) { /* first child process? */ |
461 |
> |
preload_objs(); /* preload auxiliary data */ |
462 |
> |
/* set shared memory boundary */ |
463 |
> |
shm_boundary = (char *)malloc(16); |
464 |
> |
strcpy(shm_boundary, "SHM_BOUNDARY"); |
465 |
> |
} |
466 |
> |
fflush(NULL); /* clear pending output */ |
467 |
> |
samplestep = ray_pnprocs + nadd; |
468 |
|
while (nadd--) { /* fork each new process */ |
469 |
|
int p0[2], p1[2]; |
470 |
|
if (pipe(p0) < 0 || pipe(p1) < 0) |
476 |
|
close(r_proc[pn].fd_recv); |
477 |
|
} |
478 |
|
close(p0[0]); close(p1[1]); |
479 |
+ |
close(0); /* don't share stdin */ |
480 |
|
/* following call never returns */ |
481 |
|
ray_pchild(p1[0], p0[1]); |
482 |
|
} |
483 |
|
if (r_proc[ray_pnprocs].pid < 0) |
484 |
|
error(SYSTEM, "cannot fork child process"); |
485 |
|
close(p1[0]); close(p0[1]); |
486 |
+ |
if (rand_samp) /* decorrelate random sequence */ |
487 |
+ |
srandom(random()); |
488 |
+ |
else |
489 |
+ |
samplendx++; |
490 |
+ |
/* |
491 |
+ |
* Close write stream on exec to avoid multiprocessing deadlock. |
492 |
+ |
* No use in read stream without it, so set flag there as well. |
493 |
+ |
*/ |
494 |
+ |
fcntl(p1[1], F_SETFD, FD_CLOEXEC); |
495 |
+ |
fcntl(p0[0], F_SETFD, FD_CLOEXEC); |
496 |
|
r_proc[ray_pnprocs].fd_send = p1[1]; |
497 |
|
r_proc[ray_pnprocs].fd_recv = p0[0]; |
498 |
|
r_proc[ray_pnprocs].npending = 0; |
502 |
|
} |
503 |
|
|
504 |
|
|
505 |
< |
extern void |
505 |
> |
void |
506 |
|
ray_pclose( /* close one or more child processes */ |
507 |
|
int nsub |
508 |
|
) |
509 |
|
{ |
510 |
|
static int inclose = 0; |
511 |
< |
RAY res; |
511 |
> |
RAY res; |
512 |
> |
int i, status = 0; |
513 |
> |
/* check no child / in child */ |
514 |
> |
if (ray_pnprocs <= 0) |
515 |
> |
return; |
516 |
|
/* check recursion */ |
517 |
|
if (inclose) |
518 |
|
return; |
521 |
|
if ((nsub <= 0) | (nsub > ray_pnprocs)) |
522 |
|
nsub = ray_pnprocs; |
523 |
|
/* clear our ray queue */ |
524 |
+ |
i = r_send_next; |
525 |
+ |
r_send_next = 0; |
526 |
|
while (ray_presult(&res,0) > 0) |
527 |
< |
; |
528 |
< |
/* clean up children */ |
529 |
< |
while (nsub--) { |
530 |
< |
int status; |
531 |
< |
ray_pnprocs--; |
532 |
< |
close(r_proc[ray_pnprocs].fd_recv); |
533 |
< |
close(r_proc[ray_pnprocs].fd_send); |
534 |
< |
while (wait(&status) != r_proc[ray_pnprocs].pid) |
535 |
< |
; |
536 |
< |
if (status) { |
537 |
< |
sprintf(errmsg, |
538 |
< |
"rendering process %d exited with code %d", |
539 |
< |
r_proc[ray_pnprocs].pid, status>>8); |
540 |
< |
error(WARNING, errmsg); |
527 |
> |
++i; |
528 |
> |
if (i) { |
529 |
> |
sprintf(errmsg, "dropped %d rays in ray_pclose()", i); |
530 |
> |
error(WARNING, errmsg); |
531 |
> |
} |
532 |
> |
r_recv_first = r_recv_next = RAYQLEN; |
533 |
> |
/* close send pipes */ |
534 |
> |
for (i = ray_pnprocs-nsub; i < ray_pnprocs; i++) |
535 |
> |
close(r_proc[i].fd_send); |
536 |
> |
|
537 |
> |
if (nsub == 1) { /* awaiting single process? */ |
538 |
> |
if (waitpid(r_proc[ray_pnprocs-1].pid, &status, 0) < 0) |
539 |
> |
status = 127<<8; |
540 |
> |
close(r_proc[ray_pnprocs-1].fd_recv); |
541 |
> |
} else /* else unordered wait */ |
542 |
> |
for (i = 0; i < nsub; ) { |
543 |
> |
int j, mystatus; |
544 |
> |
RT_PID pid = wait(&mystatus); |
545 |
> |
if (pid < 0) { |
546 |
> |
status = 127<<8; |
547 |
> |
break; |
548 |
> |
} |
549 |
> |
for (j = ray_pnprocs-nsub; j < ray_pnprocs; j++) |
550 |
> |
if (r_proc[j].pid == pid) { |
551 |
> |
if (mystatus) |
552 |
> |
status = mystatus; |
553 |
> |
close(r_proc[j].fd_recv); |
554 |
> |
++i; |
555 |
> |
} |
556 |
|
} |
557 |
< |
ray_pnidle--; |
557 |
> |
ray_pnprocs -= nsub; |
558 |
> |
ray_pnidle -= nsub; |
559 |
> |
if (status) { |
560 |
> |
sprintf(errmsg, "rendering process exited with code %d", status>>8); |
561 |
> |
error(WARNING, errmsg); |
562 |
|
} |
563 |
|
inclose--; |
510 |
– |
} |
511 |
– |
|
512 |
– |
|
513 |
– |
void |
514 |
– |
quit(ec) /* make sure exit is called */ |
515 |
– |
int ec; |
516 |
– |
{ |
517 |
– |
exit(ec); |
564 |
|
} |