ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.13 by greg, Tue Dec 20 20:36:44 2005 UTC vs.
Revision 2.33 by greg, Mon Jun 15 15:44:03 2020 UTC

# Line 13 | Line 13 | static const char      RCSid[] = "$Id$";
13   *  These calls are designed similarly to the ones in raycalls.c,
14   *  but allow for multiple rendering processes on the same host
15   *  machine.  There is no sense in specifying more child processes
16 < *  than you have processors, but one child may help by allowing
16 > *  than you have processor cores, but one child may help by allowing
17   *  asynchronous ray computation in an interactive program, and
18   *  will protect the caller from fatal rendering errors.
19   *
20 < *  You should first read and undrstand the header in raycalls.c,
20 > *  You should first read and understand the header in raycalls.c,
21   *  as some things are explained there that are not repated here.
22   *
23   *  The first step is opening one or more rendering processes
# Line 25 | Line 25 | static const char      RCSid[] = "$Id$";
25   *  ray_pinit() loads the octree and data structures into the
26   *  caller's memory, and ray_popen() synchronizes the ambient
27   *  file, if any.  Shared memory permits all sorts of queries
28 < *  that wouldn't be possible otherwise, without causing any real
28 > *  that wouldn't be possible otherwise without causing any real
29   *  memory overhead, since all the static data are shared
30 < *  between processes.  Rays are then traced using a simple
30 > *  between processes.  Rays are traced using a simple
31   *  queuing mechanism, explained below.
32   *
33 < *  The ray queue holds at least RAYQLEN rays, up to
34 < *  as many rays as there are rendering processes.
33 > *  The ray queue buffers RAYQLEN rays before sending to
34 > *  children, each of which may internally buffer RAYQLEN rays
35 > *  during evaluation.  Rays are not returned in the order
36 > *  they are sent when multiple processes are open.
37 > *
38   *  Rays are queued and returned by a single
39   *  ray_pqueue() call.  A ray_pqueue() return
40   *  value of 0 indicates that no rays are ready
# Line 70 | Line 73 | static const char      RCSid[] = "$Id$";
73   *  results aren't ready, but will immediately return 0.
74   *  If the second argument is 0, the call will block
75   *  until a value is available, returning 0 only if the
76 < *  queue is completely empty.  A negative return value
76 > *  queue is completely empty.  Setting the second argument
77 > *  to -1 returns 0 unless a ray is ready in the queue and
78 > *  no system calls are needed.  A negative return value
79   *  indicates that a rendering process died.  If this
80 < *  happens, ray_close(0) is automatically called to close
80 > *  happens, ray_pclose(0) is automatically called to close
81   *  all child processes, and ray_pnprocs is set to zero.
82   *
83   *  If you just want to fill the ray queue without checking for
# Line 83 | Line 88 | static const char      RCSid[] = "$Id$";
88   *              ray_psend(&myRay);
89   *      }
90   *
91 < *  Note that it is a fatal error to call ra_psend() when
92 < *  ray_pnidle is zero.  The ray_presult() and/or ray_pqueue()
93 < *  functions may be called subsequently to read back the results.
91 > *  Note that it is a mistake to call ra_psend() when
92 > *  ray_pnidle is zero, and nothing will be sent in
93 > *  this case.  Otherwise, the ray_presult() and/or ray_pqueue()
94 > *  functions may be called subsequently to read back the results
95 > *  of rays queued by ray_psend().
96   *
97   *  When you are done, you may call ray_pdone(1) to close
98   *  all child processes and clean up memory used by Radiance.
99   *  Any queued ray calculations will be awaited and discarded.
100   *  As with ray_done(), ray_pdone(0) hangs onto data files
101   *  and fonts that are likely to be used in subsequent renderings.
102 < *  Whether you want to bother cleaning up memory or not, you
103 < *  should at least call ray_pclose(0) to clean the child processes.
102 > *  Whether you need to clean up memory or not, you should
103 > *  at least call ray_pclose(0) to await the child processes.
104 > *  The caller should define a quit() function that calls
105 > *  ray_pclose(0) if ray_pnprocs > 0.
106   *
107   *  Warning:  You cannot affect any of the rendering processes
108   *  by changing global parameter values onece ray_pinit() has
# Line 123 | Line 132 | static const char      RCSid[] = "$Id$";
132   *  returning a negative value from ray_pqueue() or
133   *  ray_presult().  If you get a negative value from either
134   *  of these calls, you can assume that the processes have
135 < *  been cleaned up with a call to ray_close(), though you
135 > *  been cleaned up with a call to ray_pclose(), though you
136   *  will have to call ray_pdone() yourself if you want to
137   *  free memory.  Obviously, you cannot continue rendering
138   *  without risking further errors, but otherwise your
139   *  process should not be compromised.
140   */
141  
133 #include <stdio.h>
134 #include <sys/types.h>
135 #include <sys/wait.h> /* XXX platform */
136
142   #include  "rtprocess.h"
143   #include  "ray.h"
144   #include  "ambient.h"
145 + #include  <sys/types.h>
146 + #include  <sys/wait.h>
147   #include  "selcall.h"
148  
149   #ifndef RAYQLEN
150 < #define RAYQLEN         12              /* # rays to send at once */
150 > #define RAYQLEN         24              /* # rays to send at once */
151   #endif
152  
153   #ifndef MAX_RPROCS
# Line 155 | Line 162 | extern char    *shm_boundary;          /* boundary of shared memo
162  
163   int             ray_pnprocs = 0;        /* number of child processes */
164   int             ray_pnidle = 0;         /* number of idle children */
165 + int             ray_pnbatch = 0;        /* throughput over responsiveness? */
166  
167   static struct child_proc {
168 <        int     pid;                            /* child process id */
168 >        RT_PID  pid;                            /* child process id */
169          int     fd_send;                        /* write to child here */
170          int     fd_recv;                        /* read from child here */
171          int     npending;                       /* # rays in process */
172 <        unsigned long  rno[RAYQLEN];            /* working on these rays */
172 >        RNUMBER rno[RAYQLEN];                   /* working on these rays */
173   } r_proc[MAX_NPROCS];                   /* our child processes */
174  
175   static RAY      r_queue[2*RAYQLEN];     /* ray i/o buffer */
176 < static int      r_send_next;            /* next send ray placement */
177 < static int      r_recv_first;           /* position of first unreported ray */
178 < static int      r_recv_next;            /* next receive ray placement */
176 > static int      r_send_next = 0;        /* next send ray placement */
177 > static int      r_recv_first = RAYQLEN; /* position of first unreported ray */
178 > static int      r_recv_next = RAYQLEN;  /* next received ray placement */
179  
180 + static int      samplestep = 1;         /* sample step size */
181 +
182   #define sendq_full()    (r_send_next >= RAYQLEN)
183  
184   static int ray_pflush(void);
185   static void ray_pchild(int fd_in, int fd_out);
186  
187  
188 < extern void
188 > void
189   ray_pinit(              /* initialize ray-tracing processes */
190          char    *otnm,
191          int     nproc
# Line 186 | Line 196 | ray_pinit(             /* initialize ray-tracing processes */
196  
197          ray_init(otnm);                 /* load the shared scene */
198  
189        preload_objs();                 /* preload auxiliary data */
190
191                                        /* set shared memory boundary */
192        shm_boundary = (char *)malloc(16);
193        strcpy(shm_boundary, "SHM_BOUNDARY");
194
195        r_send_next = 0;                /* set up queue */
196        r_recv_first = r_recv_next = RAYQLEN;
197
199          ray_popen(nproc);               /* fork children */
200   }
201  
# Line 212 | Line 213 | ray_pflush(void)                       /* send queued rays to idle childre
213          for (i = ray_pnprocs; nc && i--; ) {
214                  if (r_proc[i].npending > 0)
215                          continue;       /* child looks busy */
216 <                n = (r_send_next - sfirst)/nc--;
216 >                n = r_send_next - sfirst;
217 >                if (ray_pnbatch)
218 >                        nc--;           /* maximize bundling for batch calc */
219 >                else
220 >                        n /= nc--;      /* distribute work for interactivity */
221                  if (!n)
222                          continue;
223                                          /* smuggle set size in crtype */
# Line 228 | Line 233 | ray_pflush(void)                       /* send queued rays to idle childre
233                  ray_pnidle--;           /* now she's busy */
234          }
235          if (sfirst != r_send_next)
236 <                error(CONSISTENCY, "code screwup in ray_pflush");
236 >                error(CONSISTENCY, "code screwup in ray_pflush()");
237          r_send_next = 0;
238          return(sfirst);                 /* return total # sent */
239   }
240  
241  
242 < extern void
242 > int
243   ray_psend(                      /* add a ray to our send queue */
244          RAY     *r
245   )
246   {
247 <        if (r == NULL)
248 <                return;
247 >        int     rv;
248 >
249 >        if ((r == NULL) | (ray_pnidle <= 0))
250 >                return(0);
251                                          /* flush output if necessary */
252 <        if (sendq_full() && ray_pflush() <= 0)
253 <                error(INTERNAL, "ray_pflush failed in ray_psend");
252 >        if (sendq_full() && (rv = ray_pflush()) <= 0)
253 >                return(rv);
254  
255 <        r_queue[r_send_next] = *r;
256 <        r_send_next++;
255 >        r_queue[r_send_next++] = *r;
256 >        return(1);
257   }
258  
259  
260 < extern int
260 > int
261   ray_pqueue(                     /* queue a ray for computation */
262          RAY     *r
263   )
# Line 259 | Line 266 | ray_pqueue(                    /* queue a ray for computation */
266                  return(0);
267                                          /* check for full send queue */
268          if (sendq_full()) {
269 <                RAY     mySend;
263 <                int     rval;
264 <                mySend = *r;
269 >                RAY     mySend = *r;
270                                          /* wait for a result */
271 <                rval = ray_presult(r, 0);
271 >                if (ray_presult(r, 0) <= 0)
272 >                        return(-1);
273                                          /* put new ray in queue */
274 <                r_queue[r_send_next] = mySend;
275 <                r_send_next++;
276 <                return(rval);           /* done */
274 >                r_queue[r_send_next++] = mySend;
275 >
276 >                return(1);
277          }
278                                          /* else add ray to send queue */
279 <        r_queue[r_send_next] = *r;
274 <        r_send_next++;
279 >        r_queue[r_send_next++] = *r;
280                                          /* check for returned ray... */
281          if (r_recv_first >= r_recv_next)
282                  return(0);
283                                          /* ...one is sitting in queue */
284 <        *r = r_queue[r_recv_first];
280 <        r_recv_first++;
284 >        *r = r_queue[r_recv_first++];
285          return(1);
286   }
287  
288  
289 < extern int
289 > int
290   ray_presult(            /* check for a completed ray */
291          RAY     *r,
292          int     poll
# Line 291 | Line 295 | ray_presult(           /* check for a completed ray */
295          static struct timeval   tpoll;  /* zero timeval struct */
296          static fd_set   readset, errset;
297          int     n, ok;
298 <        register int    pn;
298 >        int     pn;
299  
300          if (r == NULL)
301                  return(0);
302                                          /* check queued results first */
303          if (r_recv_first < r_recv_next) {
304 <                *r = r_queue[r_recv_first];
301 <                r_recv_first++;
304 >                *r = r_queue[r_recv_first++];
305                  return(1);
306          }
307 +        if (poll < 0)                   /* immediate polling mode? */
308 +                return(0);
309 +
310          n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
311  
312          if (ray_pflush() < 0)           /* send new rays to process */
# Line 312 | Line 318 | ray_presult(           /* check for a completed ray */
318                  n = ray_pnprocs - ray_pnidle;
319          if (n <= 0)                     /* return if nothing to await */
320                  return(0);
321 +        if (!poll && ray_pnprocs == 1)  /* one process -> skip select() */
322 +                FD_SET(r_proc[0].fd_recv, &readset);
323 +
324   getready:                               /* any children waiting for us? */
325          for (pn = ray_pnprocs; pn--; )
326                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
327                                  FD_ISSET(r_proc[pn].fd_recv, &errset))
328                          break;
329 <                                        /* call select if we must */
329 >                                        /* call select() if we must */
330          if (pn < 0) {
331                  FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
332                  for (pn = ray_pnprocs; pn--; ) {
# Line 332 | Line 341 | getready:                              /* any children waiting for us? */
341                                  poll ? &tpoll : (struct timeval *)NULL)) < 0)
342                          if (errno != EINTR) {
343                                  error(WARNING,
344 <                                        "select call failed in ray_presult");
344 >                                        "select call failed in ray_presult()");
345                                  ray_pclose(0);
346                                  return(-1);
347                          }
# Line 364 | Line 373 | getready:                              /* any children waiting for us? */
373          }
374                                          /* preen returned rays */
375          for (n = r_recv_next - r_recv_first; n--; ) {
376 <                register RAY    *rp = &r_queue[r_recv_first + n];
376 >                RAY     *rp = &r_queue[r_recv_first + n];
377                  rp->rno = r_proc[pn].rno[n];
378                  rp->parent = NULL;
379                  rp->newcset = rp->clipset = NULL;
# Line 377 | Line 386 | getready:                              /* any children waiting for us? */
386   }
387  
388  
389 < extern void
389 > void
390   ray_pdone(              /* reap children and free data */
391          int     freall
392   )
# Line 388 | Line 397 | ray_pdone(             /* reap children and free data */
397                  free((void *)shm_boundary);
398                  shm_boundary = NULL;
399          }
400 +
401          ray_done(freall);               /* free rendering data */
402   }
403  
# Line 399 | Line 409 | ray_pchild(    /* process rays (never returns) */
409   )
410   {
411          int     n;
412 <        register int    i;
412 >        int     i;
413 >                                        /* flag child process for quit() */
414 >        ray_pnprocs = -1;
415                                          /* read each ray request set */
416          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
417                  int     n2;
# Line 408 | Line 420 | ray_pchild(    /* process rays (never returns) */
420                                          /* get smuggled set length */
421                  n2 = sizeof(RAY)*r_queue[0].crtype - n;
422                  if (n2 < 0)
423 <                        error(INTERNAL, "buffer over-read in ray_pchild");
423 >                        error(INTERNAL, "buffer over-read in ray_pchild()");
424                  if (n2 > 0) {           /* read the rest of the set */
425                          i = readbuf(fd_in, (char *)r_queue + n, n2);
426                          if (i != n2)
# Line 422 | Line 434 | ray_pchild(    /* process rays (never returns) */
434                          r_queue[i].parent = NULL;
435                          r_queue[i].clipset = NULL;
436                          r_queue[i].slights = NULL;
437 <                        samplendx++;
437 >                        r_queue[i].rlvl = 0;
438 >                        samplendx += samplestep;
439                          rayclear(&r_queue[i]);
440                          rayvalue(&r_queue[i]);
441                  }
442                                          /* write back our results */
443                  i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
444                  if (i != sizeof(RAY)*n)
445 <                        error(SYSTEM, "write error in ray_pchild");
445 >                        error(SYSTEM, "write error in ray_pchild()");
446          }
447          if (n)
448 <                error(SYSTEM, "read error in ray_pchild");
448 >                error(SYSTEM, "read error in ray_pchild()");
449          ambsync();
450          quit(0);                        /* normal exit */
451   }
452  
453  
454 < extern void
454 > void
455   ray_popen(                      /* open the specified # processes */
456          int     nadd
457   )
# Line 449 | Line 462 | ray_popen(                     /* open the specified # processes */
462          if (nadd <= 0)
463                  return;
464          ambsync();                      /* load any new ambient values */
465 +        if (shm_boundary == NULL) {     /* first child process? */
466 +                preload_objs();         /* preload auxiliary data */
467 +                                        /* set shared memory boundary */
468 +                shm_boundary = (char *)malloc(16);
469 +                strcpy(shm_boundary, "SHM_BOUNDARY");
470 +        }
471          fflush(NULL);                   /* clear pending output */
472 +        samplestep = ray_pnprocs + nadd;
473          while (nadd--) {                /* fork each new process */
474                  int     p0[2], p1[2];
475                  if (pipe(p0) < 0 || pipe(p1) < 0)
# Line 461 | Line 481 | ray_popen(                     /* open the specified # processes */
481                                  close(r_proc[pn].fd_recv);
482                          }
483                          close(p0[0]); close(p1[1]);
484 +                        close(0);       /* don't share stdin */
485                                          /* following call never returns */
486                          ray_pchild(p1[0], p0[1]);
487                  }
488                  if (r_proc[ray_pnprocs].pid < 0)
489                          error(SYSTEM, "cannot fork child process");
490                  close(p1[0]); close(p0[1]);
491 +                if (rand_samp)          /* decorrelate random sequence */
492 +                        srandom(random());
493 +                else
494 +                        samplendx++;
495                  /*
496                   * Close write stream on exec to avoid multiprocessing deadlock.
497                   * No use in read stream without it, so set flag there as well.
# Line 482 | Line 507 | ray_popen(                     /* open the specified # processes */
507   }
508  
509  
510 < extern void
510 > void
511   ray_pclose(             /* close one or more child processes */
512          int     nsub
513   )
514   {
515          static int      inclose = 0;
516 <        RAY     res;
516 >        RAY             res;
517 >        int             i, status = 0;
518                                          /* check recursion */
519          if (inclose)
520                  return;
521          inclose++;
522 +                                        /* check no child / in child */
523 +        if (ray_pnprocs <= 0)
524 +                return;
525                                          /* check argument */
526          if ((nsub <= 0) | (nsub > ray_pnprocs))
527                  nsub = ray_pnprocs;
528                                          /* clear our ray queue */
529          while (ray_presult(&res,0) > 0)
530                  ;
531 <                                        /* clean up children */
532 <        while (nsub--) {
533 <                int     status;
534 <                ray_pnprocs--;
535 <                close(r_proc[ray_pnprocs].fd_recv);
536 <                close(r_proc[ray_pnprocs].fd_send);
537 <                if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
531 >        r_send_next = 0;                /* hard reset in case of error */
532 >        r_recv_first = r_recv_next = RAYQLEN;
533 >                                        /* close send pipes */
534 >        for (i = ray_pnprocs-nsub; i < ray_pnprocs; i++)
535 >                close(r_proc[i].fd_send);
536 >
537 >        if (nsub == 1) {                /* awaiting single process? */
538 >                if (waitpid(r_proc[ray_pnprocs-1].pid, &status, 0) < 0)
539                          status = 127<<8;
540 <                if (status) {
541 <                        sprintf(errmsg,
542 <                                "rendering process %d exited with code %d",
543 <                                        r_proc[ray_pnprocs].pid, status>>8);
544 <                        error(WARNING, errmsg);
540 >                close(r_proc[ray_pnprocs-1].fd_recv);
541 >        } else                          /* else unordered wait */
542 >                for (i = 0; i < nsub; ) {
543 >                        int     j, mystatus;
544 >                        RT_PID  pid = wait(&mystatus);
545 >                        for (j = ray_pnprocs-nsub; j < ray_pnprocs; j++)
546 >                                if (r_proc[j].pid == pid) {
547 >                                        if (mystatus)
548 >                                                status = mystatus;
549 >                                        close(r_proc[j].fd_recv);
550 >                                        ++i;
551 >                                }
552                  }
553 <                ray_pnidle--;
553 >        ray_pnprocs -= nsub;
554 >        ray_pnidle -= nsub;
555 >        if (status) {
556 >                sprintf(errmsg, "rendering process exited with code %d", status>>8);
557 >                error(WARNING, errmsg);
558          }
559          inclose--;
519 }
520
521
522 void
523 quit(ec)                        /* make sure exit is called */
524 int     ec;
525 {
526        exit(ec);
560   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines