ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.1 by greg, Sat Feb 22 02:07:29 2003 UTC vs.
Revision 2.11 by greg, Tue Apr 19 01:15:06 2005 UTC

# Line 7 | Line 7 | static const char      RCSid[] = "$Id$";
7   *  External symbols declared in ray.h
8   */
9  
10 < /* ====================================================================
11 < * The Radiance Software License, Version 1.0
12 < *
13 < * Copyright (c) 1990 - 2002 The Regents of the University of California,
14 < * through Lawrence Berkeley National Laboratory.   All rights reserved.
15 < *
16 < * Redistribution and use in source and binary forms, with or without
17 < * modification, are permitted provided that the following conditions
18 < * are met:
19 < *
20 < * 1. Redistributions of source code must retain the above copyright
21 < *         notice, this list of conditions and the following disclaimer.
22 < *
23 < * 2. Redistributions in binary form must reproduce the above copyright
24 < *       notice, this list of conditions and the following disclaimer in
25 < *       the documentation and/or other materials provided with the
26 < *       distribution.
27 < *
28 < * 3. The end-user documentation included with the redistribution,
29 < *           if any, must include the following acknowledgment:
30 < *             "This product includes Radiance software
31 < *                 (http://radsite.lbl.gov/)
32 < *                 developed by the Lawrence Berkeley National Laboratory
33 < *               (http://www.lbl.gov/)."
34 < *       Alternately, this acknowledgment may appear in the software itself,
35 < *       if and wherever such third-party acknowledgments normally appear.
36 < *
37 < * 4. The names "Radiance," "Lawrence Berkeley National Laboratory"
38 < *       and "The Regents of the University of California" must
39 < *       not be used to endorse or promote products derived from this
40 < *       software without prior written permission. For written
41 < *       permission, please contact [email protected].
42 < *
43 < * 5. Products derived from this software may not be called "Radiance",
44 < *       nor may "Radiance" appear in their name, without prior written
45 < *       permission of Lawrence Berkeley National Laboratory.
46 < *
47 < * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
48 < * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49 < * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
50 < * DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
51 < * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 < * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 < * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 < * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 < * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 < * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 < * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 < * SUCH DAMAGE.
59 < * ====================================================================
60 < *
61 < * This software consists of voluntary contributions made by many
62 < * individuals on behalf of Lawrence Berkeley National Laboratory.   For more
63 < * information on Lawrence Berkeley National Laboratory, please see
64 < * <http://www.lbl.gov/>.
65 < */
10 > #include "copyright.h"
11  
12   /*
13   *  These calls are designed similarly to the ones in raycalls.c,
# Line 98 | Line 43 | static const char      RCSid[] = "$Id$";
43   *      myRay.rorg = ( ray origin point )
44   *      myRay.rdir = ( normalized ray direction )
45   *      myRay.rmax = ( maximum length, or zero for no limit )
46 < *      rayorigin(&myRay, NULL, PRIMARY, 1.0);
46 > *      rayorigin(&myRay, PRIMARY, NULL, NULL);
47   *      myRay.rno = ( my personal ray identifier )
48   *      if (ray_pqueue(&myRay) == 1)
49   *              { do something with results }
# Line 106 | Line 51 | static const char      RCSid[] = "$Id$";
51   *  Note the differences between this and the simpler ray_trace()
52   *  call.  In particular, the call may or may not return a value
53   *  in the passed ray structure.  Also, you need to call rayorigin()
54 < *  yourself, which is normally for you by ray_trace().  The
55 < *  great thing is that ray_pqueue() will trace rays faster in
54 > *  yourself, which is normally called for you by ray_trace().  The
55 > *  benefit is that ray_pqueue() will trace rays faster in
56   *  proportion to the number of CPUs you have available on your
57   *  system.  If the ray queue is full before the call, ray_pqueue()
58   *  will block until a result is ready so it can queue this one.
59 < *  The global int ray_idle indicates the number of currently idle
59 > *  The global int ray_pnidle indicates the number of currently idle
60   *  children.  If you want to check for completed rays without blocking,
61   *  or get the results from rays that have been queued without
62   *  queuing any new ones, the ray_presult() call is for you:
# Line 126 | Line 71 | static const char      RCSid[] = "$Id$";
71   *  queue is completely empty.  A negative return value
72   *  indicates that a rendering process died.  If this
73   *  happens, ray_close(0) is automatically called to close
74 < *  all child processes, and ray_nprocs is set to zero.
74 > *  all child processes, and ray_pnprocs is set to zero.
75   *
76   *  If you just want to fill the ray queue without checking for
77 < *  results, check ray_idle and call ray_psend():
77 > *  results, check ray_pnidle and call ray_psend():
78   *
79 < *      while (ray_idle) {
79 > *      while (ray_pnidle) {
80   *              ( set up ray )
81   *              ray_psend(&myRay);
82   *      }
83   *
84 < *  The ray_presult() and/or ray_pqueue() functions may then be
85 < *  called to read back the results.
84 > *  Note that it is a fatal error to call ra_psend() when
85 > *  ray_pnidle is zero.  The ray_presult() and/or ray_pqueue()
86 > *  functions may be called subsequently to read back the results.
87   *
88   *  When you are done, you may call ray_pdone(1) to close
89   *  all child processes and clean up memory used by Radiance.
# Line 154 | Line 100 | static const char      RCSid[] = "$Id$";
100   *  If you just want to reap children so that you can alter the
101   *  rendering parameters without reloading the scene, use the
102   *  ray_pclose(0) and ray_popen(nproc) calls to close
103 < *  then restart the child processes.
103 > *  then restart the child processes after the changes are made.
104   *
105   *  Note:  These routines are written to coordinate with the
106   *  definitions in raycalls.c, and in fact depend on them.
107   *  If you want to trace a ray and get a result synchronously,
108 < *  use the ray_trace() call to compute it in the parent process.
108 > *  use the ray_trace() call to compute it in the parent process
109 > *  This will not interfere with any subprocess calculations,
110 > *  but beware that a fatal error may end with a call to quit().
111   *
112   *  Note:  One of the advantages of using separate processes
113   *  is that it gives the calling program some immunity from
114   *  fatal rendering errors.  As discussed in raycalls.c,
115   *  Radiance tends to throw up its hands and exit at the
116   *  first sign of trouble, calling quit() to return control
117 < *  to the system.  Although you can avoid exit() with
117 > *  to the top level.  Although you can avoid exit() with
118   *  your own longjmp() in quit(), the cleanup afterwards
119   *  is always suspect.  Through the use of subprocesses,
120   *  we avoid this pitfall by closing the processes and
# Line 175 | Line 123 | static const char      RCSid[] = "$Id$";
123   *  of these calls, you can assume that the processes have
124   *  been cleaned up with a call to ray_close(), though you
125   *  will have to call ray_pdone() yourself if you want to
126 < *  free memory.  Obviously, you cannot continue rendering,
127 < *  but otherwise your process should not be compromised.
126 > *  free memory.  Obviously, you cannot continue rendering
127 > *  without risking further errors, but otherwise your
128 > *  process should not be compromised.
129   */
130  
131 < #include  "ray.h"
131 > #include <stdio.h>
132 > #include <sys/types.h>
133 > #include <sys/wait.h> /* XXX platform */
134  
135 + #include  "rtprocess.h"
136 + #include  "ray.h"
137 + #include  "ambient.h"
138   #include  "selcall.h"
139  
140   #ifndef RAYQLEN
# Line 197 | Line 151 | static const char      RCSid[] = "$Id$";
151  
152   extern char     *shm_boundary;          /* boundary of shared memory */
153  
154 < int             ray_nprocs = 0;         /* number of child processes */
155 < int             ray_idle = 0;           /* number of idle children */
154 > int             ray_pnprocs = 0;        /* number of child processes */
155 > int             ray_pnidle = 0;         /* number of idle children */
156  
157   static struct child_proc {
158          int     pid;                            /* child process id */
# Line 215 | Line 169 | static int     r_recv_next;            /* next receive ray placement
169  
170   #define sendq_full()    (r_send_next >= RAYQLEN)
171  
172 + static int ray_pflush(void);
173 + static void ray_pchild(int      fd_in, int      fd_out);
174  
175 < void
176 < ray_pinit(otnm, nproc)          /* initialize ray-tracing processes */
177 < char    *otnm;
178 < int     nproc;
175 >
176 > extern void
177 > ray_pinit(              /* initialize ray-tracing processes */
178 >        char    *otnm,
179 >        int     nproc
180 > )
181   {
182          if (nobjects > 0)               /* close old calculation */
183                  ray_pdone(0);
# Line 240 | Line 198 | int    nproc;
198  
199  
200   static int
201 < ray_pflush()                    /* send queued rays to idle children */
201 > ray_pflush(void)                        /* send queued rays to idle children */
202   {
203          int     nc, n, nw, i, sfirst;
204  
205 <        if ((ray_idle <= 0 | r_send_next <= 0))
205 >        if ((ray_pnidle <= 0) | (r_send_next <= 0))
206                  return(0);              /* nothing we can send */
207          
208          sfirst = 0;                     /* divvy up labor */
209 <        nc = ray_idle;
210 <        for (i = ray_nprocs; nc && i--; ) {
209 >        nc = ray_pnidle;
210 >        for (i = ray_pnprocs; nc && i--; ) {
211                  if (r_proc[i].npending > 0)
212                          continue;       /* child looks busy */
213                  n = (r_send_next - sfirst)/nc--;
# Line 265 | Line 223 | ray_pflush()                   /* send queued rays to idle children */
223                  while (n--)             /* record ray IDs */
224                          r_proc[i].rno[n] = r_queue[sfirst+n].rno;
225                  sfirst += r_proc[i].npending;
226 <                ray_idle--;             /* now she's busy */
226 >                ray_pnidle--;           /* now she's busy */
227          }
228          if (sfirst != r_send_next)
229                  error(CONSISTENCY, "code screwup in ray_pflush");
# Line 274 | Line 232 | ray_pflush()                   /* send queued rays to idle children */
232   }
233  
234  
235 < void
236 < ray_psend(r)                    /* add a ray to our send queue */
237 < RAY     *r;
235 > extern void
236 > ray_psend(                      /* add a ray to our send queue */
237 >        RAY     *r
238 > )
239   {
240          if (r == NULL)
241                  return;
# Line 284 | Line 243 | RAY    *r;
243          if (sendq_full() && ray_pflush() <= 0)
244                  error(INTERNAL, "ray_pflush failed in ray_psend");
245  
246 <        copystruct(&r_queue[r_send_next], r);
246 >        r_queue[r_send_next] = *r;
247          r_send_next++;
248   }
249  
250  
251 < int
252 < ray_pqueue(r)                   /* queue a ray for computation */
253 < RAY     *r;
251 > extern int
252 > ray_pqueue(                     /* queue a ray for computation */
253 >        RAY     *r
254 > )
255   {
256          if (r == NULL)
257                  return(0);
# Line 299 | Line 259 | RAY    *r;
259          if (sendq_full()) {
260                  RAY     mySend;
261                  int     rval;
262 <                copystruct(&mySend, r);
262 >                mySend = *r;
263                                          /* wait for a result */
264                  rval = ray_presult(r, 0);
265                                          /* put new ray in queue */
266 <                copystruct(&r_queue[r_send_next], &mySend);
266 >                r_queue[r_send_next] = mySend;
267                  r_send_next++;
268                  return(rval);           /* done */
269          }
270                                          /* add ray to send queue */
271 <        copystruct(&r_queue[r_send_next], r);
271 >        r_queue[r_send_next] = *r;
272          r_send_next++;
273                                          /* check for returned ray... */
274          if (r_recv_first >= r_recv_next)
275                  return(0);
276                                          /* ...one is sitting in queue */
277 <        copystruct(r, &r_queue[r_recv_first]);
277 >        *r = r_queue[r_recv_first];
278          r_recv_first++;
279          return(1);
280   }
281  
282  
283 < int
284 < ray_presult(r, poll)            /* check for a completed ray */
285 < RAY     *r;
286 < int     poll;
283 > extern int
284 > ray_presult(            /* check for a completed ray */
285 >        RAY     *r,
286 >        int     poll
287 > )
288   {
289          static struct timeval   tpoll;  /* zero timeval struct */
290          static fd_set   readset, errset;
# Line 334 | Line 295 | int    poll;
295                  return(0);
296                                          /* check queued results first */
297          if (r_recv_first < r_recv_next) {
298 <                copystruct(r, &r_queue[r_recv_first]);
298 >                *r = r_queue[r_recv_first];
299                  r_recv_first++;
300                  return(1);
301          }
302 <        n = ray_nprocs - ray_idle;      /* pending before flush? */
302 >        n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
303  
304          if (ray_pflush() < 0)           /* send new rays to process */
305                  return(-1);
# Line 346 | Line 307 | int    poll;
307          r_recv_first = r_recv_next = RAYQLEN;
308  
309          if (!poll)                      /* count newly sent unless polling */
310 <                n = ray_nprocs - ray_idle;
310 >                n = ray_pnprocs - ray_pnidle;
311          if (n <= 0)                     /* return if nothing to await */
312                  return(0);
313   getready:                               /* any children waiting for us? */
314 <        for (pn = ray_nprocs; pn--; )
314 >        for (pn = ray_pnprocs; pn--; )
315                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
316                                  FD_ISSET(r_proc[pn].fd_recv, &errset))
317                          break;
318                                          /* call select if we must */
319          if (pn < 0) {
320                  FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
321 <                for (pn = ray_nprocs; pn--; ) {
321 >                for (pn = ray_pnprocs; pn--; ) {
322                          if (r_proc[pn].npending > 0)
323                                  FD_SET(r_proc[pn].fd_recv, &readset);
324                          FD_SET(r_proc[pn].fd_recv, &errset);
# Line 393 | Line 354 | getready:                              /* any children waiting for us? */
354          if (n <= 0)
355                  FD_CLR(r_proc[pn].fd_recv, &errset);
356          r_proc[pn].npending = 0;
357 <        ray_idle++;
357 >        ray_pnidle++;
358                                          /* check for rendering errors */
359          if (!ok) {
360                  ray_pclose(0);          /* process died -- clean up */
# Line 409 | Line 370 | getready:                              /* any children waiting for us? */
370                  rp->slights = NULL;
371          }
372                                          /* return first ray received */
373 <        copystruct(r, &r_queue[r_recv_first]);
373 >        *r = r_queue[r_recv_first];
374          r_recv_first++;
375          return(1);
376   }
377  
378  
379 < void
380 < ray_pdone(freall)               /* reap children and free data */
381 < int     freall;
379 > extern void
380 > ray_pdone(              /* reap children and free data */
381 >        int     freall
382 > )
383   {
384          ray_pclose(0);                  /* close child processes */
385  
# Line 430 | Line 392 | int    freall;
392  
393  
394   static void
395 < ray_pchild(fd_in, fd_out)       /* process rays (never returns) */
396 < int     fd_in;
397 < int     fd_out;
395 > ray_pchild(     /* process rays (never returns) */
396 >        int     fd_in,
397 >        int     fd_out
398 > )
399   {
400          int     n;
401          register int    i;
# Line 459 | Line 422 | int    fd_out;
422                          r_queue[i].parent = NULL;
423                          r_queue[i].clipset = NULL;
424                          r_queue[i].slights = NULL;
462                        r_queue[i].revf = raytrace;
425                          samplendx++;
426                          rayclear(&r_queue[i]);
427                          rayvalue(&r_queue[i]);
# Line 476 | Line 438 | int    fd_out;
438   }
439  
440  
441 < void
442 < ray_popen(nadd)                 /* open the specified # processes */
443 < int     nadd;
441 > extern void
442 > ray_popen(                      /* open the specified # processes */
443 >        int     nadd
444 > )
445   {
446                                          /* check if our table has room */
447 <        if (ray_nprocs + nadd > MAX_NPROCS)
448 <                nadd = MAX_NPROCS - ray_nprocs;
447 >        if (ray_pnprocs + nadd > MAX_NPROCS)
448 >                nadd = MAX_NPROCS - ray_pnprocs;
449          if (nadd <= 0)
450                  return;
451          fflush(stderr);                 /* clear pending output */
# Line 491 | Line 454 | int    nadd;
454                  int     p0[2], p1[2];
455                  if (pipe(p0) < 0 || pipe(p1) < 0)
456                          error(SYSTEM, "cannot create pipe");
457 <                if ((r_proc[ray_nprocs].pid = fork()) == 0) {
457 >                if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
458                          int     pn;     /* close others' descriptors */
459 <                        for (pn = ray_nprocs; pn--; ) {
459 >                        for (pn = ray_pnprocs; pn--; ) {
460                                  close(r_proc[pn].fd_send);
461                                  close(r_proc[pn].fd_recv);
462                          }
# Line 501 | Line 464 | int    nadd;
464                                          /* following call never returns */
465                          ray_pchild(p1[0], p0[1]);
466                  }
467 <                if (r_proc[ray_nprocs].pid < 0)
467 >                if (r_proc[ray_pnprocs].pid < 0)
468                          error(SYSTEM, "cannot fork child process");
469                  close(p1[0]); close(p0[1]);
470 <                r_proc[ray_nprocs].fd_send = p1[1];
471 <                r_proc[ray_nprocs].fd_recv = p0[0];
472 <                r_proc[ray_nprocs].npending = 0;
473 <                ray_nprocs++;
474 <                ray_idle++;
470 >                /*
471 >                 * Close write stream on exec to avoid multiprocessing deadlock.
472 >                 * No use in read stream without it, so set flag there as well.
473 >                 */
474 >                fcntl(p1[1], F_SETFD, FD_CLOEXEC);
475 >                fcntl(p0[0], F_SETFD, FD_CLOEXEC);
476 >                r_proc[ray_pnprocs].fd_send = p1[1];
477 >                r_proc[ray_pnprocs].fd_recv = p0[0];
478 >                r_proc[ray_pnprocs].npending = 0;
479 >                ray_pnprocs++;
480 >                ray_pnidle++;
481          }
482   }
483  
484  
485 < void
486 < ray_pclose(nsub)                /* close one or more child processes */
487 < int     nsub;
485 > extern void
486 > ray_pclose(             /* close one or more child processes */
487 >        int     nsub
488 > )
489   {
490          static int      inclose = 0;
491          RAY     res;
# Line 524 | Line 494 | int    nsub;
494                  return;
495          inclose++;
496                                          /* check argument */
497 <        if ((nsub <= 0 | nsub > ray_nprocs))
498 <                nsub = ray_nprocs;
497 >        if ((nsub <= 0) | (nsub > ray_pnprocs))
498 >                nsub = ray_pnprocs;
499                                          /* clear our ray queue */
500          while (ray_presult(&res,0) > 0)
501                  ;
502                                          /* clean up children */
503          while (nsub--) {
504                  int     status;
505 <                ray_nprocs--;
506 <                close(r_proc[ray_nprocs].fd_recv);
507 <                close(r_proc[ray_nprocs].fd_send);
508 <                while (wait(&status) != r_proc[ray_nprocs].pid)
509 <                        ;
505 >                ray_pnprocs--;
506 >                close(r_proc[ray_pnprocs].fd_recv);
507 >                close(r_proc[ray_pnprocs].fd_send);
508 >                if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
509 >                        status = 127<<8;
510                  if (status) {
511                          sprintf(errmsg,
512                                  "rendering process %d exited with code %d",
513 <                                        r_proc[ray_nprocs].pid, status>>8);
513 >                                        r_proc[ray_pnprocs].pid, status>>8);
514                          error(WARNING, errmsg);
515                  }
516 <                ray_idle--;
516 >                ray_pnidle--;
517          }
518          inclose--;
519   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines