ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
(Generate patch)

Comparing ray/src/rt/raypcalls.c (file contents):
Revision 2.1 by greg, Sat Feb 22 02:07:29 2003 UTC vs.
Revision 2.33 by greg, Mon Jun 15 15:44:03 2020 UTC

# Line 7 | Line 7 | static const char      RCSid[] = "$Id$";
7   *  External symbols declared in ray.h
8   */
9  
10 < /* ====================================================================
11 < * The Radiance Software License, Version 1.0
12 < *
13 < * Copyright (c) 1990 - 2002 The Regents of the University of California,
14 < * through Lawrence Berkeley National Laboratory.   All rights reserved.
15 < *
16 < * Redistribution and use in source and binary forms, with or without
17 < * modification, are permitted provided that the following conditions
18 < * are met:
19 < *
20 < * 1. Redistributions of source code must retain the above copyright
21 < *         notice, this list of conditions and the following disclaimer.
22 < *
23 < * 2. Redistributions in binary form must reproduce the above copyright
24 < *       notice, this list of conditions and the following disclaimer in
25 < *       the documentation and/or other materials provided with the
26 < *       distribution.
27 < *
28 < * 3. The end-user documentation included with the redistribution,
29 < *           if any, must include the following acknowledgment:
30 < *             "This product includes Radiance software
31 < *                 (http://radsite.lbl.gov/)
32 < *                 developed by the Lawrence Berkeley National Laboratory
33 < *               (http://www.lbl.gov/)."
34 < *       Alternately, this acknowledgment may appear in the software itself,
35 < *       if and wherever such third-party acknowledgments normally appear.
36 < *
37 < * 4. The names "Radiance," "Lawrence Berkeley National Laboratory"
38 < *       and "The Regents of the University of California" must
39 < *       not be used to endorse or promote products derived from this
40 < *       software without prior written permission. For written
41 < *       permission, please contact [email protected].
42 < *
43 < * 5. Products derived from this software may not be called "Radiance",
44 < *       nor may "Radiance" appear in their name, without prior written
45 < *       permission of Lawrence Berkeley National Laboratory.
46 < *
47 < * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
48 < * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49 < * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
50 < * DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
51 < * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 < * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 < * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 < * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 < * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 < * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 < * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 < * SUCH DAMAGE.
59 < * ====================================================================
60 < *
61 < * This software consists of voluntary contributions made by many
62 < * individuals on behalf of Lawrence Berkeley National Laboratory.   For more
63 < * information on Lawrence Berkeley National Laboratory, please see
64 < * <http://www.lbl.gov/>.
65 < */
10 > #include "copyright.h"
11  
12   /*
13   *  These calls are designed similarly to the ones in raycalls.c,
14   *  but allow for multiple rendering processes on the same host
15   *  machine.  There is no sense in specifying more child processes
16 < *  than you have processors, but one child may help by allowing
16 > *  than you have processor cores, but one child may help by allowing
17   *  asynchronous ray computation in an interactive program, and
18   *  will protect the caller from fatal rendering errors.
19   *
20 < *  You should first read and undrstand the header in raycalls.c,
20 > *  You should first read and understand the header in raycalls.c,
21   *  as some things are explained there that are not repated here.
22   *
23   *  The first step is opening one or more rendering processes
24   *  with a call to ray_pinit(oct, nproc).  Before calling fork(),
25   *  ray_pinit() loads the octree and data structures into the
26 < *  caller's memory.  This permits all sorts of queries that
27 < *  wouldn't be possible otherwise, without causing any real
26 > *  caller's memory, and ray_popen() synchronizes the ambient
27 > *  file, if any.  Shared memory permits all sorts of queries
28 > *  that wouldn't be possible otherwise without causing any real
29   *  memory overhead, since all the static data are shared
30 < *  between processes.  Rays are then traced using a simple
30 > *  between processes.  Rays are traced using a simple
31   *  queuing mechanism, explained below.
32   *
33 < *  The ray queue holds as many rays as there are rendering
34 < *  processes.  Rays are queued and returned by a single
33 > *  The ray queue buffers RAYQLEN rays before sending to
34 > *  children, each of which may internally buffer RAYQLEN rays
35 > *  during evaluation.  Rays are not returned in the order
36 > *  they are sent when multiple processes are open.
37 > *
38 > *  Rays are queued and returned by a single
39   *  ray_pqueue() call.  A ray_pqueue() return
40   *  value of 0 indicates that no rays are ready
41   *  and the queue is not yet full.  A return value of 1
# Line 98 | Line 48 | static const char      RCSid[] = "$Id$";
48   *      myRay.rorg = ( ray origin point )
49   *      myRay.rdir = ( normalized ray direction )
50   *      myRay.rmax = ( maximum length, or zero for no limit )
51 < *      rayorigin(&myRay, NULL, PRIMARY, 1.0);
51 > *      rayorigin(&myRay, PRIMARY, NULL, NULL);
52   *      myRay.rno = ( my personal ray identifier )
53   *      if (ray_pqueue(&myRay) == 1)
54   *              { do something with results }
# Line 106 | Line 56 | static const char      RCSid[] = "$Id$";
56   *  Note the differences between this and the simpler ray_trace()
57   *  call.  In particular, the call may or may not return a value
58   *  in the passed ray structure.  Also, you need to call rayorigin()
59 < *  yourself, which is normally for you by ray_trace().  The
60 < *  great thing is that ray_pqueue() will trace rays faster in
59 > *  yourself, which is normally called for you by ray_trace().  The
60 > *  benefit is that ray_pqueue() will trace rays faster in
61   *  proportion to the number of CPUs you have available on your
62   *  system.  If the ray queue is full before the call, ray_pqueue()
63   *  will block until a result is ready so it can queue this one.
64 < *  The global int ray_idle indicates the number of currently idle
64 > *  The global int ray_pnidle indicates the number of currently idle
65   *  children.  If you want to check for completed rays without blocking,
66   *  or get the results from rays that have been queued without
67   *  queuing any new ones, the ray_presult() call is for you:
# Line 123 | Line 73 | static const char      RCSid[] = "$Id$";
73   *  results aren't ready, but will immediately return 0.
74   *  If the second argument is 0, the call will block
75   *  until a value is available, returning 0 only if the
76 < *  queue is completely empty.  A negative return value
76 > *  queue is completely empty.  Setting the second argument
77 > *  to -1 returns 0 unless a ray is ready in the queue and
78 > *  no system calls are needed.  A negative return value
79   *  indicates that a rendering process died.  If this
80 < *  happens, ray_close(0) is automatically called to close
81 < *  all child processes, and ray_nprocs is set to zero.
80 > *  happens, ray_pclose(0) is automatically called to close
81 > *  all child processes, and ray_pnprocs is set to zero.
82   *
83   *  If you just want to fill the ray queue without checking for
84 < *  results, check ray_idle and call ray_psend():
84 > *  results, check ray_pnidle and call ray_psend():
85   *
86 < *      while (ray_idle) {
86 > *      while (ray_pnidle) {
87   *              ( set up ray )
88   *              ray_psend(&myRay);
89   *      }
90   *
91 < *  The ray_presult() and/or ray_pqueue() functions may then be
92 < *  called to read back the results.
91 > *  Note that it is a mistake to call ra_psend() when
92 > *  ray_pnidle is zero, and nothing will be sent in
93 > *  this case.  Otherwise, the ray_presult() and/or ray_pqueue()
94 > *  functions may be called subsequently to read back the results
95 > *  of rays queued by ray_psend().
96   *
97   *  When you are done, you may call ray_pdone(1) to close
98   *  all child processes and clean up memory used by Radiance.
99   *  Any queued ray calculations will be awaited and discarded.
100   *  As with ray_done(), ray_pdone(0) hangs onto data files
101   *  and fonts that are likely to be used in subsequent renderings.
102 < *  Whether you want to bother cleaning up memory or not, you
103 < *  should at least call ray_pclose(0) to clean the child processes.
102 > *  Whether you need to clean up memory or not, you should
103 > *  at least call ray_pclose(0) to await the child processes.
104 > *  The caller should define a quit() function that calls
105 > *  ray_pclose(0) if ray_pnprocs > 0.
106   *
107   *  Warning:  You cannot affect any of the rendering processes
108   *  by changing global parameter values onece ray_pinit() has
# Line 154 | Line 111 | static const char      RCSid[] = "$Id$";
111   *  If you just want to reap children so that you can alter the
112   *  rendering parameters without reloading the scene, use the
113   *  ray_pclose(0) and ray_popen(nproc) calls to close
114 < *  then restart the child processes.
114 > *  then restart the child processes after the changes are made.
115   *
116   *  Note:  These routines are written to coordinate with the
117   *  definitions in raycalls.c, and in fact depend on them.
118   *  If you want to trace a ray and get a result synchronously,
119   *  use the ray_trace() call to compute it in the parent process.
120 + *  This will not interfere with any subprocess calculations,
121 + *  but beware that a fatal error may end with a call to quit().
122   *
123   *  Note:  One of the advantages of using separate processes
124   *  is that it gives the calling program some immunity from
125   *  fatal rendering errors.  As discussed in raycalls.c,
126   *  Radiance tends to throw up its hands and exit at the
127   *  first sign of trouble, calling quit() to return control
128 < *  to the system.  Although you can avoid exit() with
128 > *  to the top level.  Although you can avoid exit() with
129   *  your own longjmp() in quit(), the cleanup afterwards
130   *  is always suspect.  Through the use of subprocesses,
131   *  we avoid this pitfall by closing the processes and
132   *  returning a negative value from ray_pqueue() or
133   *  ray_presult().  If you get a negative value from either
134   *  of these calls, you can assume that the processes have
135 < *  been cleaned up with a call to ray_close(), though you
135 > *  been cleaned up with a call to ray_pclose(), though you
136   *  will have to call ray_pdone() yourself if you want to
137 < *  free memory.  Obviously, you cannot continue rendering,
138 < *  but otherwise your process should not be compromised.
137 > *  free memory.  Obviously, you cannot continue rendering
138 > *  without risking further errors, but otherwise your
139 > *  process should not be compromised.
140   */
141  
142 + #include  "rtprocess.h"
143   #include  "ray.h"
144 <
144 > #include  "ambient.h"
145 > #include  <sys/types.h>
146 > #include  <sys/wait.h>
147   #include  "selcall.h"
148  
149   #ifndef RAYQLEN
150 < #define RAYQLEN         16              /* # rays to send at once */
150 > #define RAYQLEN         24              /* # rays to send at once */
151   #endif
152  
153   #ifndef MAX_RPROCS
# Line 197 | Line 160 | static const char      RCSid[] = "$Id$";
160  
161   extern char     *shm_boundary;          /* boundary of shared memory */
162  
163 < int             ray_nprocs = 0;         /* number of child processes */
164 < int             ray_idle = 0;           /* number of idle children */
163 > int             ray_pnprocs = 0;        /* number of child processes */
164 > int             ray_pnidle = 0;         /* number of idle children */
165 > int             ray_pnbatch = 0;        /* throughput over responsiveness? */
166  
167   static struct child_proc {
168 <        int     pid;                            /* child process id */
168 >        RT_PID  pid;                            /* child process id */
169          int     fd_send;                        /* write to child here */
170          int     fd_recv;                        /* read from child here */
171          int     npending;                       /* # rays in process */
172 <        unsigned long  rno[RAYQLEN];            /* working on these rays */
172 >        RNUMBER rno[RAYQLEN];                   /* working on these rays */
173   } r_proc[MAX_NPROCS];                   /* our child processes */
174  
175   static RAY      r_queue[2*RAYQLEN];     /* ray i/o buffer */
176 < static int      r_send_next;            /* next send ray placement */
177 < static int      r_recv_first;           /* position of first unreported ray */
178 < static int      r_recv_next;            /* next receive ray placement */
176 > static int      r_send_next = 0;        /* next send ray placement */
177 > static int      r_recv_first = RAYQLEN; /* position of first unreported ray */
178 > static int      r_recv_next = RAYQLEN;  /* next received ray placement */
179  
180 + static int      samplestep = 1;         /* sample step size */
181 +
182   #define sendq_full()    (r_send_next >= RAYQLEN)
183  
184 + static int ray_pflush(void);
185 + static void ray_pchild(int fd_in, int fd_out);
186  
187 +
188   void
189 < ray_pinit(otnm, nproc)          /* initialize ray-tracing processes */
190 < char    *otnm;
191 < int     nproc;
189 > ray_pinit(              /* initialize ray-tracing processes */
190 >        char    *otnm,
191 >        int     nproc
192 > )
193   {
194          if (nobjects > 0)               /* close old calculation */
195                  ray_pdone(0);
196  
197          ray_init(otnm);                 /* load the shared scene */
198  
229        preload_objs();                 /* preload auxiliary data */
230
231                                        /* set shared memory boundary */
232        shm_boundary = (char *)malloc(16);
233        strcpy(shm_boundary, "SHM_BOUNDARY");
234
235        r_send_next = 0;                /* set up queue */
236        r_recv_first = r_recv_next = RAYQLEN;
237
199          ray_popen(nproc);               /* fork children */
200   }
201  
202  
203   static int
204 < ray_pflush()                    /* send queued rays to idle children */
204 > ray_pflush(void)                        /* send queued rays to idle children */
205   {
206          int     nc, n, nw, i, sfirst;
207  
208 <        if ((ray_idle <= 0 | r_send_next <= 0))
208 >        if ((ray_pnidle <= 0) | (r_send_next <= 0))
209                  return(0);              /* nothing we can send */
210          
211          sfirst = 0;                     /* divvy up labor */
212 <        nc = ray_idle;
213 <        for (i = ray_nprocs; nc && i--; ) {
212 >        nc = ray_pnidle;
213 >        for (i = ray_pnprocs; nc && i--; ) {
214                  if (r_proc[i].npending > 0)
215                          continue;       /* child looks busy */
216 <                n = (r_send_next - sfirst)/nc--;
216 >                n = r_send_next - sfirst;
217 >                if (ray_pnbatch)
218 >                        nc--;           /* maximize bundling for batch calc */
219 >                else
220 >                        n /= nc--;      /* distribute work for interactivity */
221                  if (!n)
222                          continue;
223                                          /* smuggle set size in crtype */
# Line 265 | Line 230 | ray_pflush()                   /* send queued rays to idle children */
230                  while (n--)             /* record ray IDs */
231                          r_proc[i].rno[n] = r_queue[sfirst+n].rno;
232                  sfirst += r_proc[i].npending;
233 <                ray_idle--;             /* now she's busy */
233 >                ray_pnidle--;           /* now she's busy */
234          }
235          if (sfirst != r_send_next)
236 <                error(CONSISTENCY, "code screwup in ray_pflush");
236 >                error(CONSISTENCY, "code screwup in ray_pflush()");
237          r_send_next = 0;
238          return(sfirst);                 /* return total # sent */
239   }
240  
241  
242 < void
243 < ray_psend(r)                    /* add a ray to our send queue */
244 < RAY     *r;
242 > int
243 > ray_psend(                      /* add a ray to our send queue */
244 >        RAY     *r
245 > )
246   {
247 <        if (r == NULL)
248 <                return;
247 >        int     rv;
248 >
249 >        if ((r == NULL) | (ray_pnidle <= 0))
250 >                return(0);
251                                          /* flush output if necessary */
252 <        if (sendq_full() && ray_pflush() <= 0)
253 <                error(INTERNAL, "ray_pflush failed in ray_psend");
252 >        if (sendq_full() && (rv = ray_pflush()) <= 0)
253 >                return(rv);
254  
255 <        copystruct(&r_queue[r_send_next], r);
256 <        r_send_next++;
255 >        r_queue[r_send_next++] = *r;
256 >        return(1);
257   }
258  
259  
260   int
261 < ray_pqueue(r)                   /* queue a ray for computation */
262 < RAY     *r;
261 > ray_pqueue(                     /* queue a ray for computation */
262 >        RAY     *r
263 > )
264   {
265          if (r == NULL)
266                  return(0);
267                                          /* check for full send queue */
268          if (sendq_full()) {
269 <                RAY     mySend;
301 <                int     rval;
302 <                copystruct(&mySend, r);
269 >                RAY     mySend = *r;
270                                          /* wait for a result */
271 <                rval = ray_presult(r, 0);
271 >                if (ray_presult(r, 0) <= 0)
272 >                        return(-1);
273                                          /* put new ray in queue */
274 <                copystruct(&r_queue[r_send_next], &mySend);
275 <                r_send_next++;
276 <                return(rval);           /* done */
274 >                r_queue[r_send_next++] = mySend;
275 >
276 >                return(1);
277          }
278 <                                        /* add ray to send queue */
279 <        copystruct(&r_queue[r_send_next], r);
312 <        r_send_next++;
278 >                                        /* else add ray to send queue */
279 >        r_queue[r_send_next++] = *r;
280                                          /* check for returned ray... */
281          if (r_recv_first >= r_recv_next)
282                  return(0);
283                                          /* ...one is sitting in queue */
284 <        copystruct(r, &r_queue[r_recv_first]);
318 <        r_recv_first++;
284 >        *r = r_queue[r_recv_first++];
285          return(1);
286   }
287  
288  
289   int
290 < ray_presult(r, poll)            /* check for a completed ray */
291 < RAY     *r;
292 < int     poll;
290 > ray_presult(            /* check for a completed ray */
291 >        RAY     *r,
292 >        int     poll
293 > )
294   {
295          static struct timeval   tpoll;  /* zero timeval struct */
296          static fd_set   readset, errset;
297          int     n, ok;
298 <        register int    pn;
298 >        int     pn;
299  
300          if (r == NULL)
301                  return(0);
302                                          /* check queued results first */
303          if (r_recv_first < r_recv_next) {
304 <                copystruct(r, &r_queue[r_recv_first]);
338 <                r_recv_first++;
304 >                *r = r_queue[r_recv_first++];
305                  return(1);
306          }
307 <        n = ray_nprocs - ray_idle;      /* pending before flush? */
307 >        if (poll < 0)                   /* immediate polling mode? */
308 >                return(0);
309  
310 +        n = ray_pnprocs - ray_pnidle;   /* pending before flush? */
311 +
312          if (ray_pflush() < 0)           /* send new rays to process */
313                  return(-1);
314                                          /* reset receive queue */
315          r_recv_first = r_recv_next = RAYQLEN;
316  
317          if (!poll)                      /* count newly sent unless polling */
318 <                n = ray_nprocs - ray_idle;
318 >                n = ray_pnprocs - ray_pnidle;
319          if (n <= 0)                     /* return if nothing to await */
320                  return(0);
321 +        if (!poll && ray_pnprocs == 1)  /* one process -> skip select() */
322 +                FD_SET(r_proc[0].fd_recv, &readset);
323 +
324   getready:                               /* any children waiting for us? */
325 <        for (pn = ray_nprocs; pn--; )
325 >        for (pn = ray_pnprocs; pn--; )
326                  if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
327                                  FD_ISSET(r_proc[pn].fd_recv, &errset))
328                          break;
329 <                                        /* call select if we must */
329 >                                        /* call select() if we must */
330          if (pn < 0) {
331                  FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
332 <                for (pn = ray_nprocs; pn--; ) {
332 >                for (pn = ray_pnprocs; pn--; ) {
333                          if (r_proc[pn].npending > 0)
334                                  FD_SET(r_proc[pn].fd_recv, &readset);
335                          FD_SET(r_proc[pn].fd_recv, &errset);
# Line 369 | Line 341 | getready:                              /* any children waiting for us? */
341                                  poll ? &tpoll : (struct timeval *)NULL)) < 0)
342                          if (errno != EINTR) {
343                                  error(WARNING,
344 <                                        "select call failed in ray_presult");
344 >                                        "select call failed in ray_presult()");
345                                  ray_pclose(0);
346                                  return(-1);
347                          }
# Line 393 | Line 365 | getready:                              /* any children waiting for us? */
365          if (n <= 0)
366                  FD_CLR(r_proc[pn].fd_recv, &errset);
367          r_proc[pn].npending = 0;
368 <        ray_idle++;
368 >        ray_pnidle++;
369                                          /* check for rendering errors */
370          if (!ok) {
371                  ray_pclose(0);          /* process died -- clean up */
# Line 401 | Line 373 | getready:                              /* any children waiting for us? */
373          }
374                                          /* preen returned rays */
375          for (n = r_recv_next - r_recv_first; n--; ) {
376 <                register RAY    *rp = &r_queue[r_recv_first + n];
376 >                RAY     *rp = &r_queue[r_recv_first + n];
377                  rp->rno = r_proc[pn].rno[n];
378                  rp->parent = NULL;
379                  rp->newcset = rp->clipset = NULL;
# Line 409 | Line 381 | getready:                              /* any children waiting for us? */
381                  rp->slights = NULL;
382          }
383                                          /* return first ray received */
384 <        copystruct(r, &r_queue[r_recv_first]);
413 <        r_recv_first++;
384 >        *r = r_queue[r_recv_first++];
385          return(1);
386   }
387  
388  
389   void
390 < ray_pdone(freall)               /* reap children and free data */
391 < int     freall;
390 > ray_pdone(              /* reap children and free data */
391 >        int     freall
392 > )
393   {
394          ray_pclose(0);                  /* close child processes */
395  
# Line 425 | Line 397 | int    freall;
397                  free((void *)shm_boundary);
398                  shm_boundary = NULL;
399          }
400 +
401          ray_done(freall);               /* free rendering data */
402   }
403  
404  
405   static void
406 < ray_pchild(fd_in, fd_out)       /* process rays (never returns) */
407 < int     fd_in;
408 < int     fd_out;
406 > ray_pchild(     /* process rays (never returns) */
407 >        int     fd_in,
408 >        int     fd_out
409 > )
410   {
411          int     n;
412 <        register int    i;
412 >        int     i;
413 >                                        /* flag child process for quit() */
414 >        ray_pnprocs = -1;
415                                          /* read each ray request set */
416          while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
417                  int     n2;
418 <                if (n % sizeof(RAY))
418 >                if (n < sizeof(RAY))
419                          break;
444                n /= sizeof(RAY);
420                                          /* get smuggled set length */
421 <                n2 = r_queue[0].crtype - n;
421 >                n2 = sizeof(RAY)*r_queue[0].crtype - n;
422                  if (n2 < 0)
423 <                        error(INTERNAL, "buffer over-read in ray_pchild");
423 >                        error(INTERNAL, "buffer over-read in ray_pchild()");
424                  if (n2 > 0) {           /* read the rest of the set */
425 <                        i = readbuf(fd_in, (char *)(r_queue+n),
426 <                                        sizeof(RAY)*n2);
452 <                        if (i != sizeof(RAY)*n2)
425 >                        i = readbuf(fd_in, (char *)r_queue + n, n2);
426 >                        if (i != n2)
427                                  break;
428                          n += n2;
429                  }
430 +                n /= sizeof(RAY);
431                                          /* evaluate rays */
432                  for (i = 0; i < n; i++) {
433                          r_queue[i].crtype = r_queue[i].rtype;
434                          r_queue[i].parent = NULL;
435                          r_queue[i].clipset = NULL;
436                          r_queue[i].slights = NULL;
437 <                        r_queue[i].revf = raytrace;
438 <                        samplendx++;
437 >                        r_queue[i].rlvl = 0;
438 >                        samplendx += samplestep;
439                          rayclear(&r_queue[i]);
440                          rayvalue(&r_queue[i]);
441                  }
442                                          /* write back our results */
443                  i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
444                  if (i != sizeof(RAY)*n)
445 <                        error(SYSTEM, "write error in ray_pchild");
445 >                        error(SYSTEM, "write error in ray_pchild()");
446          }
447          if (n)
448 <                error(SYSTEM, "read error in ray_pchild");
448 >                error(SYSTEM, "read error in ray_pchild()");
449          ambsync();
450          quit(0);                        /* normal exit */
451   }
452  
453  
454   void
455 < ray_popen(nadd)                 /* open the specified # processes */
456 < int     nadd;
455 > ray_popen(                      /* open the specified # processes */
456 >        int     nadd
457 > )
458   {
459                                          /* check if our table has room */
460 <        if (ray_nprocs + nadd > MAX_NPROCS)
461 <                nadd = MAX_NPROCS - ray_nprocs;
460 >        if (ray_pnprocs + nadd > MAX_NPROCS)
461 >                nadd = MAX_NPROCS - ray_pnprocs;
462          if (nadd <= 0)
463                  return;
464 <        fflush(stderr);                 /* clear pending output */
465 <        fflush(stdout);
464 >        ambsync();                      /* load any new ambient values */
465 >        if (shm_boundary == NULL) {     /* first child process? */
466 >                preload_objs();         /* preload auxiliary data */
467 >                                        /* set shared memory boundary */
468 >                shm_boundary = (char *)malloc(16);
469 >                strcpy(shm_boundary, "SHM_BOUNDARY");
470 >        }
471 >        fflush(NULL);                   /* clear pending output */
472 >        samplestep = ray_pnprocs + nadd;
473          while (nadd--) {                /* fork each new process */
474                  int     p0[2], p1[2];
475                  if (pipe(p0) < 0 || pipe(p1) < 0)
476                          error(SYSTEM, "cannot create pipe");
477 <                if ((r_proc[ray_nprocs].pid = fork()) == 0) {
477 >                if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
478                          int     pn;     /* close others' descriptors */
479 <                        for (pn = ray_nprocs; pn--; ) {
479 >                        for (pn = ray_pnprocs; pn--; ) {
480                                  close(r_proc[pn].fd_send);
481                                  close(r_proc[pn].fd_recv);
482                          }
483                          close(p0[0]); close(p1[1]);
484 +                        close(0);       /* don't share stdin */
485                                          /* following call never returns */
486                          ray_pchild(p1[0], p0[1]);
487                  }
488 <                if (r_proc[ray_nprocs].pid < 0)
488 >                if (r_proc[ray_pnprocs].pid < 0)
489                          error(SYSTEM, "cannot fork child process");
490                  close(p1[0]); close(p0[1]);
491 <                r_proc[ray_nprocs].fd_send = p1[1];
492 <                r_proc[ray_nprocs].fd_recv = p0[0];
493 <                r_proc[ray_nprocs].npending = 0;
494 <                ray_nprocs++;
495 <                ray_idle++;
491 >                if (rand_samp)          /* decorrelate random sequence */
492 >                        srandom(random());
493 >                else
494 >                        samplendx++;
495 >                /*
496 >                 * Close write stream on exec to avoid multiprocessing deadlock.
497 >                 * No use in read stream without it, so set flag there as well.
498 >                 */
499 >                fcntl(p1[1], F_SETFD, FD_CLOEXEC);
500 >                fcntl(p0[0], F_SETFD, FD_CLOEXEC);
501 >                r_proc[ray_pnprocs].fd_send = p1[1];
502 >                r_proc[ray_pnprocs].fd_recv = p0[0];
503 >                r_proc[ray_pnprocs].npending = 0;
504 >                ray_pnprocs++;
505 >                ray_pnidle++;
506          }
507   }
508  
509  
510   void
511 < ray_pclose(nsub)                /* close one or more child processes */
512 < int     nsub;
511 > ray_pclose(             /* close one or more child processes */
512 >        int     nsub
513 > )
514   {
515          static int      inclose = 0;
516 <        RAY     res;
516 >        RAY             res;
517 >        int             i, status = 0;
518                                          /* check recursion */
519          if (inclose)
520                  return;
521          inclose++;
522 +                                        /* check no child / in child */
523 +        if (ray_pnprocs <= 0)
524 +                return;
525                                          /* check argument */
526 <        if ((nsub <= 0 | nsub > ray_nprocs))
527 <                nsub = ray_nprocs;
526 >        if ((nsub <= 0) | (nsub > ray_pnprocs))
527 >                nsub = ray_pnprocs;
528                                          /* clear our ray queue */
529          while (ray_presult(&res,0) > 0)
530                  ;
531 <                                        /* clean up children */
532 <        while (nsub--) {
533 <                int     status;
534 <                ray_nprocs--;
535 <                close(r_proc[ray_nprocs].fd_recv);
536 <                close(r_proc[ray_nprocs].fd_send);
537 <                while (wait(&status) != r_proc[ray_nprocs].pid)
538 <                        ;
539 <                if (status) {
540 <                        sprintf(errmsg,
541 <                                "rendering process %d exited with code %d",
542 <                                        r_proc[ray_nprocs].pid, status>>8);
543 <                        error(WARNING, errmsg);
531 >        r_send_next = 0;                /* hard reset in case of error */
532 >        r_recv_first = r_recv_next = RAYQLEN;
533 >                                        /* close send pipes */
534 >        for (i = ray_pnprocs-nsub; i < ray_pnprocs; i++)
535 >                close(r_proc[i].fd_send);
536 >
537 >        if (nsub == 1) {                /* awaiting single process? */
538 >                if (waitpid(r_proc[ray_pnprocs-1].pid, &status, 0) < 0)
539 >                        status = 127<<8;
540 >                close(r_proc[ray_pnprocs-1].fd_recv);
541 >        } else                          /* else unordered wait */
542 >                for (i = 0; i < nsub; ) {
543 >                        int     j, mystatus;
544 >                        RT_PID  pid = wait(&mystatus);
545 >                        for (j = ray_pnprocs-nsub; j < ray_pnprocs; j++)
546 >                                if (r_proc[j].pid == pid) {
547 >                                        if (mystatus)
548 >                                                status = mystatus;
549 >                                        close(r_proc[j].fd_recv);
550 >                                        ++i;
551 >                                }
552                  }
553 <                ray_idle--;
553 >        ray_pnprocs -= nsub;
554 >        ray_pnidle -= nsub;
555 >        if (status) {
556 >                sprintf(errmsg, "rendering process exited with code %d", status>>8);
557 >                error(WARNING, errmsg);
558          }
559          inclose--;
549 }
550
551
552 void
553 quit(ec)                        /* make sure exit is called */
554 int     ec;
555 {
556        exit(ec);
560   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines