ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.6
Committed: Tue Mar 30 16:13:01 2004 UTC (20 years, 1 month ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.5: +45 -29 lines
Log Message:
Continued ANSIfication. There are only bits and pieces left now.

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 schorsch 2.6 static const char RCSid[] = "$Id: raypcalls.c,v 2.5 2003/07/27 22:12:03 schorsch Exp $";
3 greg 2.1 #endif
4     /*
5     * raypcalls.c - interface for parallel rendering using Radiance
6     *
7     * External symbols declared in ray.h
8     */
9    
10 greg 2.2 #include "copyright.h"
11 greg 2.1
12     /*
13     * These calls are designed similarly to the ones in raycalls.c,
14     * but allow for multiple rendering processes on the same host
15     * machine. There is no sense in specifying more child processes
16     * than you have processors, but one child may help by allowing
17     * asynchronous ray computation in an interactive program, and
18     * will protect the caller from fatal rendering errors.
19     *
20     * You should first read and undrstand the header in raycalls.c,
21     * as some things are explained there that are not repated here.
22     *
23     * The first step is opening one or more rendering processes
24     * with a call to ray_pinit(oct, nproc). Before calling fork(),
25     * ray_pinit() loads the octree and data structures into the
26     * caller's memory. This permits all sorts of queries that
27     * wouldn't be possible otherwise, without causing any real
28     * memory overhead, since all the static data are shared
29     * between processes. Rays are then traced using a simple
30     * queuing mechanism, explained below.
31     *
32     * The ray queue holds as many rays as there are rendering
33     * processes. Rays are queued and returned by a single
34     * ray_pqueue() call. A ray_pqueue() return
35     * value of 0 indicates that no rays are ready
36     * and the queue is not yet full. A return value of 1
37     * indicates that a ray was returned, though it is probably
38     * not the one you just requested. Rays may be identified by
39     * the rno member of the RAY struct, which is incremented
40     * by the rayorigin() call, or may be set explicitly by
41     * the caller. Below is an example call sequence:
42     *
43     * myRay.rorg = ( ray origin point )
44     * myRay.rdir = ( normalized ray direction )
45     * myRay.rmax = ( maximum length, or zero for no limit )
46     * rayorigin(&myRay, NULL, PRIMARY, 1.0);
47     * myRay.rno = ( my personal ray identifier )
48     * if (ray_pqueue(&myRay) == 1)
49     * { do something with results }
50     *
51     * Note the differences between this and the simpler ray_trace()
52     * call. In particular, the call may or may not return a value
53     * in the passed ray structure. Also, you need to call rayorigin()
54     * yourself, which is normally for you by ray_trace(). The
55     * great thing is that ray_pqueue() will trace rays faster in
56     * proportion to the number of CPUs you have available on your
57     * system. If the ray queue is full before the call, ray_pqueue()
58     * will block until a result is ready so it can queue this one.
59 greg 2.3 * The global int ray_pnidle indicates the number of currently idle
60 greg 2.1 * children. If you want to check for completed rays without blocking,
61     * or get the results from rays that have been queued without
62     * queuing any new ones, the ray_presult() call is for you:
63     *
64     * if (ray_presult(&myRay, 1) == 1)
65     * { do something with results }
66     *
67     * If the second argument is 1, the call won't block when
68     * results aren't ready, but will immediately return 0.
69     * If the second argument is 0, the call will block
70     * until a value is available, returning 0 only if the
71     * queue is completely empty. A negative return value
72     * indicates that a rendering process died. If this
73     * happens, ray_close(0) is automatically called to close
74 greg 2.3 * all child processes, and ray_pnprocs is set to zero.
75 greg 2.1 *
76     * If you just want to fill the ray queue without checking for
77 greg 2.3 * results, check ray_pnidle and call ray_psend():
78 greg 2.1 *
79 greg 2.3 * while (ray_pnidle) {
80 greg 2.1 * ( set up ray )
81     * ray_psend(&myRay);
82     * }
83     *
84     * The ray_presult() and/or ray_pqueue() functions may then be
85     * called to read back the results.
86     *
87     * When you are done, you may call ray_pdone(1) to close
88     * all child processes and clean up memory used by Radiance.
89     * Any queued ray calculations will be awaited and discarded.
90     * As with ray_done(), ray_pdone(0) hangs onto data files
91     * and fonts that are likely to be used in subsequent renderings.
92     * Whether you want to bother cleaning up memory or not, you
93     * should at least call ray_pclose(0) to clean the child processes.
94     *
95     * Warning: You cannot affect any of the rendering processes
96     * by changing global parameter values onece ray_pinit() has
97     * been called. Changing global parameters will have no effect
98     * until the next call to ray_pinit(), which restarts everything.
99     * If you just want to reap children so that you can alter the
100     * rendering parameters without reloading the scene, use the
101     * ray_pclose(0) and ray_popen(nproc) calls to close
102     * then restart the child processes.
103     *
104     * Note: These routines are written to coordinate with the
105     * definitions in raycalls.c, and in fact depend on them.
106     * If you want to trace a ray and get a result synchronously,
107     * use the ray_trace() call to compute it in the parent process.
108     *
109     * Note: One of the advantages of using separate processes
110     * is that it gives the calling program some immunity from
111     * fatal rendering errors. As discussed in raycalls.c,
112     * Radiance tends to throw up its hands and exit at the
113     * first sign of trouble, calling quit() to return control
114     * to the system. Although you can avoid exit() with
115     * your own longjmp() in quit(), the cleanup afterwards
116     * is always suspect. Through the use of subprocesses,
117     * we avoid this pitfall by closing the processes and
118     * returning a negative value from ray_pqueue() or
119     * ray_presult(). If you get a negative value from either
120     * of these calls, you can assume that the processes have
121     * been cleaned up with a call to ray_close(), though you
122     * will have to call ray_pdone() yourself if you want to
123     * free memory. Obviously, you cannot continue rendering,
124     * but otherwise your process should not be compromised.
125     */
126    
127 schorsch 2.6 #include <stdio.h>
128     #include <sys/types.h>
129     #include <sys/wait.h> /* XXX platform */
130    
131     #include "rtprocess.h"
132 greg 2.1 #include "ray.h"
133 schorsch 2.6 #include "ambient.h"
134 greg 2.1 #include "selcall.h"
135    
136     #ifndef RAYQLEN
137     #define RAYQLEN 16 /* # rays to send at once */
138     #endif
139    
140     #ifndef MAX_RPROCS
141     #if (FD_SETSIZE/2-4 < 64)
142     #define MAX_NPROCS (FD_SETSIZE/2-4)
143     #else
144     #define MAX_NPROCS 64 /* max. # rendering processes */
145     #endif
146     #endif
147    
148     extern char *shm_boundary; /* boundary of shared memory */
149    
150 greg 2.3 int ray_pnprocs = 0; /* number of child processes */
151     int ray_pnidle = 0; /* number of idle children */
152 greg 2.1
153     static struct child_proc {
154     int pid; /* child process id */
155     int fd_send; /* write to child here */
156     int fd_recv; /* read from child here */
157     int npending; /* # rays in process */
158     unsigned long rno[RAYQLEN]; /* working on these rays */
159     } r_proc[MAX_NPROCS]; /* our child processes */
160    
161     static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
162     static int r_send_next; /* next send ray placement */
163     static int r_recv_first; /* position of first unreported ray */
164     static int r_recv_next; /* next receive ray placement */
165    
166     #define sendq_full() (r_send_next >= RAYQLEN)
167    
168 schorsch 2.6 static int ray_pflush(void);
169     static void ray_pchild(int fd_in, int fd_out);
170 greg 2.1
171 schorsch 2.6
172     extern void
173     ray_pinit( /* initialize ray-tracing processes */
174     char *otnm,
175     int nproc
176     )
177 greg 2.1 {
178     if (nobjects > 0) /* close old calculation */
179     ray_pdone(0);
180    
181     ray_init(otnm); /* load the shared scene */
182    
183     preload_objs(); /* preload auxiliary data */
184    
185     /* set shared memory boundary */
186     shm_boundary = (char *)malloc(16);
187     strcpy(shm_boundary, "SHM_BOUNDARY");
188    
189     r_send_next = 0; /* set up queue */
190     r_recv_first = r_recv_next = RAYQLEN;
191    
192     ray_popen(nproc); /* fork children */
193     }
194    
195    
196     static int
197 schorsch 2.6 ray_pflush(void) /* send queued rays to idle children */
198 greg 2.1 {
199     int nc, n, nw, i, sfirst;
200    
201 schorsch 2.5 if ((ray_pnidle <= 0) | (r_send_next <= 0))
202 greg 2.1 return(0); /* nothing we can send */
203    
204     sfirst = 0; /* divvy up labor */
205 greg 2.3 nc = ray_pnidle;
206     for (i = ray_pnprocs; nc && i--; ) {
207 greg 2.1 if (r_proc[i].npending > 0)
208     continue; /* child looks busy */
209     n = (r_send_next - sfirst)/nc--;
210     if (!n)
211     continue;
212     /* smuggle set size in crtype */
213     r_queue[sfirst].crtype = n;
214     nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
215     sizeof(RAY)*n);
216     if (nw != sizeof(RAY)*n)
217     return(-1); /* write error */
218     r_proc[i].npending = n;
219     while (n--) /* record ray IDs */
220     r_proc[i].rno[n] = r_queue[sfirst+n].rno;
221     sfirst += r_proc[i].npending;
222 greg 2.3 ray_pnidle--; /* now she's busy */
223 greg 2.1 }
224     if (sfirst != r_send_next)
225     error(CONSISTENCY, "code screwup in ray_pflush");
226     r_send_next = 0;
227     return(sfirst); /* return total # sent */
228     }
229    
230    
231 schorsch 2.6 extern void
232     ray_psend( /* add a ray to our send queue */
233     RAY *r
234     )
235 greg 2.1 {
236     if (r == NULL)
237     return;
238     /* flush output if necessary */
239     if (sendq_full() && ray_pflush() <= 0)
240     error(INTERNAL, "ray_pflush failed in ray_psend");
241    
242 schorsch 2.4 r_queue[r_send_next] = *r;
243 greg 2.1 r_send_next++;
244     }
245    
246    
247 schorsch 2.6 extern int
248     ray_pqueue( /* queue a ray for computation */
249     RAY *r
250     )
251 greg 2.1 {
252     if (r == NULL)
253     return(0);
254     /* check for full send queue */
255     if (sendq_full()) {
256     RAY mySend;
257     int rval;
258 schorsch 2.4 mySend = *r;
259 greg 2.1 /* wait for a result */
260     rval = ray_presult(r, 0);
261     /* put new ray in queue */
262 schorsch 2.4 r_queue[r_send_next] = mySend;
263 greg 2.1 r_send_next++;
264     return(rval); /* done */
265     }
266     /* add ray to send queue */
267 schorsch 2.4 r_queue[r_send_next] = *r;
268 greg 2.1 r_send_next++;
269     /* check for returned ray... */
270     if (r_recv_first >= r_recv_next)
271     return(0);
272     /* ...one is sitting in queue */
273 schorsch 2.4 *r = r_queue[r_recv_first];
274 greg 2.1 r_recv_first++;
275     return(1);
276     }
277    
278    
279 schorsch 2.6 extern int
280     ray_presult( /* check for a completed ray */
281     RAY *r,
282     int poll
283     )
284 greg 2.1 {
285     static struct timeval tpoll; /* zero timeval struct */
286     static fd_set readset, errset;
287     int n, ok;
288     register int pn;
289    
290     if (r == NULL)
291     return(0);
292     /* check queued results first */
293     if (r_recv_first < r_recv_next) {
294 schorsch 2.4 *r = r_queue[r_recv_first];
295 greg 2.1 r_recv_first++;
296     return(1);
297     }
298 greg 2.3 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
299 greg 2.1
300     if (ray_pflush() < 0) /* send new rays to process */
301     return(-1);
302     /* reset receive queue */
303     r_recv_first = r_recv_next = RAYQLEN;
304    
305     if (!poll) /* count newly sent unless polling */
306 greg 2.3 n = ray_pnprocs - ray_pnidle;
307 greg 2.1 if (n <= 0) /* return if nothing to await */
308     return(0);
309     getready: /* any children waiting for us? */
310 greg 2.3 for (pn = ray_pnprocs; pn--; )
311 greg 2.1 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
312     FD_ISSET(r_proc[pn].fd_recv, &errset))
313     break;
314     /* call select if we must */
315     if (pn < 0) {
316     FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
317 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
318 greg 2.1 if (r_proc[pn].npending > 0)
319     FD_SET(r_proc[pn].fd_recv, &readset);
320     FD_SET(r_proc[pn].fd_recv, &errset);
321     if (r_proc[pn].fd_recv >= n)
322     n = r_proc[pn].fd_recv + 1;
323     }
324     /* find out who is ready */
325     while ((n = select(n, &readset, (fd_set *)NULL, &errset,
326     poll ? &tpoll : (struct timeval *)NULL)) < 0)
327     if (errno != EINTR) {
328     error(WARNING,
329     "select call failed in ray_presult");
330     ray_pclose(0);
331     return(-1);
332     }
333     if (n > 0) /* go back and get it */
334     goto getready;
335     return(0); /* else poll came up empty */
336     }
337     if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
338     error(CONSISTENCY, "buffer shortage in ray_presult()");
339    
340     /* read rendered ray data */
341     n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
342     sizeof(RAY)*r_proc[pn].npending);
343     if (n > 0) {
344     r_recv_next += n/sizeof(RAY);
345     ok = (n == sizeof(RAY)*r_proc[pn].npending);
346     } else
347     ok = 0;
348     /* reset child's status */
349     FD_CLR(r_proc[pn].fd_recv, &readset);
350     if (n <= 0)
351     FD_CLR(r_proc[pn].fd_recv, &errset);
352     r_proc[pn].npending = 0;
353 greg 2.3 ray_pnidle++;
354 greg 2.1 /* check for rendering errors */
355     if (!ok) {
356     ray_pclose(0); /* process died -- clean up */
357     return(-1);
358     }
359     /* preen returned rays */
360     for (n = r_recv_next - r_recv_first; n--; ) {
361     register RAY *rp = &r_queue[r_recv_first + n];
362     rp->rno = r_proc[pn].rno[n];
363     rp->parent = NULL;
364     rp->newcset = rp->clipset = NULL;
365     rp->rox = NULL;
366     rp->slights = NULL;
367     }
368     /* return first ray received */
369 schorsch 2.4 *r = r_queue[r_recv_first];
370 greg 2.1 r_recv_first++;
371     return(1);
372     }
373    
374    
375 schorsch 2.6 extern void
376     ray_pdone( /* reap children and free data */
377     int freall
378     )
379 greg 2.1 {
380     ray_pclose(0); /* close child processes */
381    
382     if (shm_boundary != NULL) { /* clear shared memory boundary */
383     free((void *)shm_boundary);
384     shm_boundary = NULL;
385     }
386     ray_done(freall); /* free rendering data */
387     }
388    
389    
390     static void
391 schorsch 2.6 ray_pchild( /* process rays (never returns) */
392     int fd_in,
393     int fd_out
394     )
395 greg 2.1 {
396     int n;
397     register int i;
398     /* read each ray request set */
399     while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
400     int n2;
401     if (n % sizeof(RAY))
402     break;
403     n /= sizeof(RAY);
404     /* get smuggled set length */
405     n2 = r_queue[0].crtype - n;
406     if (n2 < 0)
407     error(INTERNAL, "buffer over-read in ray_pchild");
408     if (n2 > 0) { /* read the rest of the set */
409     i = readbuf(fd_in, (char *)(r_queue+n),
410     sizeof(RAY)*n2);
411     if (i != sizeof(RAY)*n2)
412     break;
413     n += n2;
414     }
415     /* evaluate rays */
416     for (i = 0; i < n; i++) {
417     r_queue[i].crtype = r_queue[i].rtype;
418     r_queue[i].parent = NULL;
419     r_queue[i].clipset = NULL;
420     r_queue[i].slights = NULL;
421     r_queue[i].revf = raytrace;
422     samplendx++;
423     rayclear(&r_queue[i]);
424     rayvalue(&r_queue[i]);
425     }
426     /* write back our results */
427     i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
428     if (i != sizeof(RAY)*n)
429     error(SYSTEM, "write error in ray_pchild");
430     }
431     if (n)
432     error(SYSTEM, "read error in ray_pchild");
433     ambsync();
434     quit(0); /* normal exit */
435     }
436    
437    
438 schorsch 2.6 extern void
439     ray_popen( /* open the specified # processes */
440     int nadd
441     )
442 greg 2.1 {
443     /* check if our table has room */
444 greg 2.3 if (ray_pnprocs + nadd > MAX_NPROCS)
445     nadd = MAX_NPROCS - ray_pnprocs;
446 greg 2.1 if (nadd <= 0)
447     return;
448     fflush(stderr); /* clear pending output */
449     fflush(stdout);
450     while (nadd--) { /* fork each new process */
451     int p0[2], p1[2];
452     if (pipe(p0) < 0 || pipe(p1) < 0)
453     error(SYSTEM, "cannot create pipe");
454 greg 2.3 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
455 greg 2.1 int pn; /* close others' descriptors */
456 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
457 greg 2.1 close(r_proc[pn].fd_send);
458     close(r_proc[pn].fd_recv);
459     }
460     close(p0[0]); close(p1[1]);
461     /* following call never returns */
462     ray_pchild(p1[0], p0[1]);
463     }
464 greg 2.3 if (r_proc[ray_pnprocs].pid < 0)
465 greg 2.1 error(SYSTEM, "cannot fork child process");
466     close(p1[0]); close(p0[1]);
467 greg 2.3 r_proc[ray_pnprocs].fd_send = p1[1];
468     r_proc[ray_pnprocs].fd_recv = p0[0];
469     r_proc[ray_pnprocs].npending = 0;
470     ray_pnprocs++;
471     ray_pnidle++;
472 greg 2.1 }
473     }
474    
475    
476 schorsch 2.6 extern void
477     ray_pclose( /* close one or more child processes */
478     int nsub
479     )
480 greg 2.1 {
481     static int inclose = 0;
482     RAY res;
483     /* check recursion */
484     if (inclose)
485     return;
486     inclose++;
487     /* check argument */
488 schorsch 2.5 if ((nsub <= 0) | (nsub > ray_pnprocs))
489 greg 2.3 nsub = ray_pnprocs;
490 greg 2.1 /* clear our ray queue */
491     while (ray_presult(&res,0) > 0)
492     ;
493     /* clean up children */
494     while (nsub--) {
495     int status;
496 greg 2.3 ray_pnprocs--;
497     close(r_proc[ray_pnprocs].fd_recv);
498     close(r_proc[ray_pnprocs].fd_send);
499     while (wait(&status) != r_proc[ray_pnprocs].pid)
500 greg 2.1 ;
501     if (status) {
502     sprintf(errmsg,
503     "rendering process %d exited with code %d",
504 greg 2.3 r_proc[ray_pnprocs].pid, status>>8);
505 greg 2.1 error(WARNING, errmsg);
506     }
507 greg 2.3 ray_pnidle--;
508 greg 2.1 }
509     inclose--;
510     }
511    
512    
513     void
514     quit(ec) /* make sure exit is called */
515     int ec;
516     {
517     exit(ec);
518     }