ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.5
Committed: Sun Jul 27 22:12:03 2003 UTC (20 years, 9 months ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.4: +3 -3 lines
Log Message:
Added grouping parens to reduce ambiguity warnings.

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 schorsch 2.5 static const char RCSid[] = "$Id: raypcalls.c,v 2.4 2003/07/21 22:30:19 schorsch Exp $";
3 greg 2.1 #endif
4     /*
5     * raypcalls.c - interface for parallel rendering using Radiance
6     *
7     * External symbols declared in ray.h
8     */
9    
10 greg 2.2 #include "copyright.h"
11 greg 2.1
12     /*
13     * These calls are designed similarly to the ones in raycalls.c,
14     * but allow for multiple rendering processes on the same host
15     * machine. There is no sense in specifying more child processes
16     * than you have processors, but one child may help by allowing
17     * asynchronous ray computation in an interactive program, and
18     * will protect the caller from fatal rendering errors.
19     *
20     * You should first read and undrstand the header in raycalls.c,
21     * as some things are explained there that are not repated here.
22     *
23     * The first step is opening one or more rendering processes
24     * with a call to ray_pinit(oct, nproc). Before calling fork(),
25     * ray_pinit() loads the octree and data structures into the
26     * caller's memory. This permits all sorts of queries that
27     * wouldn't be possible otherwise, without causing any real
28     * memory overhead, since all the static data are shared
29     * between processes. Rays are then traced using a simple
30     * queuing mechanism, explained below.
31     *
32     * The ray queue holds as many rays as there are rendering
33     * processes. Rays are queued and returned by a single
34     * ray_pqueue() call. A ray_pqueue() return
35     * value of 0 indicates that no rays are ready
36     * and the queue is not yet full. A return value of 1
37     * indicates that a ray was returned, though it is probably
38     * not the one you just requested. Rays may be identified by
39     * the rno member of the RAY struct, which is incremented
40     * by the rayorigin() call, or may be set explicitly by
41     * the caller. Below is an example call sequence:
42     *
43     * myRay.rorg = ( ray origin point )
44     * myRay.rdir = ( normalized ray direction )
45     * myRay.rmax = ( maximum length, or zero for no limit )
46     * rayorigin(&myRay, NULL, PRIMARY, 1.0);
47     * myRay.rno = ( my personal ray identifier )
48     * if (ray_pqueue(&myRay) == 1)
49     * { do something with results }
50     *
51     * Note the differences between this and the simpler ray_trace()
52     * call. In particular, the call may or may not return a value
53     * in the passed ray structure. Also, you need to call rayorigin()
54     * yourself, which is normally for you by ray_trace(). The
55     * great thing is that ray_pqueue() will trace rays faster in
56     * proportion to the number of CPUs you have available on your
57     * system. If the ray queue is full before the call, ray_pqueue()
58     * will block until a result is ready so it can queue this one.
59 greg 2.3 * The global int ray_pnidle indicates the number of currently idle
60 greg 2.1 * children. If you want to check for completed rays without blocking,
61     * or get the results from rays that have been queued without
62     * queuing any new ones, the ray_presult() call is for you:
63     *
64     * if (ray_presult(&myRay, 1) == 1)
65     * { do something with results }
66     *
67     * If the second argument is 1, the call won't block when
68     * results aren't ready, but will immediately return 0.
69     * If the second argument is 0, the call will block
70     * until a value is available, returning 0 only if the
71     * queue is completely empty. A negative return value
72     * indicates that a rendering process died. If this
73     * happens, ray_close(0) is automatically called to close
74 greg 2.3 * all child processes, and ray_pnprocs is set to zero.
75 greg 2.1 *
76     * If you just want to fill the ray queue without checking for
77 greg 2.3 * results, check ray_pnidle and call ray_psend():
78 greg 2.1 *
79 greg 2.3 * while (ray_pnidle) {
80 greg 2.1 * ( set up ray )
81     * ray_psend(&myRay);
82     * }
83     *
84     * The ray_presult() and/or ray_pqueue() functions may then be
85     * called to read back the results.
86     *
87     * When you are done, you may call ray_pdone(1) to close
88     * all child processes and clean up memory used by Radiance.
89     * Any queued ray calculations will be awaited and discarded.
90     * As with ray_done(), ray_pdone(0) hangs onto data files
91     * and fonts that are likely to be used in subsequent renderings.
92     * Whether you want to bother cleaning up memory or not, you
93     * should at least call ray_pclose(0) to clean the child processes.
94     *
95     * Warning: You cannot affect any of the rendering processes
96     * by changing global parameter values onece ray_pinit() has
97     * been called. Changing global parameters will have no effect
98     * until the next call to ray_pinit(), which restarts everything.
99     * If you just want to reap children so that you can alter the
100     * rendering parameters without reloading the scene, use the
101     * ray_pclose(0) and ray_popen(nproc) calls to close
102     * then restart the child processes.
103     *
104     * Note: These routines are written to coordinate with the
105     * definitions in raycalls.c, and in fact depend on them.
106     * If you want to trace a ray and get a result synchronously,
107     * use the ray_trace() call to compute it in the parent process.
108     *
109     * Note: One of the advantages of using separate processes
110     * is that it gives the calling program some immunity from
111     * fatal rendering errors. As discussed in raycalls.c,
112     * Radiance tends to throw up its hands and exit at the
113     * first sign of trouble, calling quit() to return control
114     * to the system. Although you can avoid exit() with
115     * your own longjmp() in quit(), the cleanup afterwards
116     * is always suspect. Through the use of subprocesses,
117     * we avoid this pitfall by closing the processes and
118     * returning a negative value from ray_pqueue() or
119     * ray_presult(). If you get a negative value from either
120     * of these calls, you can assume that the processes have
121     * been cleaned up with a call to ray_close(), though you
122     * will have to call ray_pdone() yourself if you want to
123     * free memory. Obviously, you cannot continue rendering,
124     * but otherwise your process should not be compromised.
125     */
126    
127     #include "ray.h"
128    
129     #include "selcall.h"
130    
131     #ifndef RAYQLEN
132     #define RAYQLEN 16 /* # rays to send at once */
133     #endif
134    
135     #ifndef MAX_RPROCS
136     #if (FD_SETSIZE/2-4 < 64)
137     #define MAX_NPROCS (FD_SETSIZE/2-4)
138     #else
139     #define MAX_NPROCS 64 /* max. # rendering processes */
140     #endif
141     #endif
142    
143     extern char *shm_boundary; /* boundary of shared memory */
144    
145 greg 2.3 int ray_pnprocs = 0; /* number of child processes */
146     int ray_pnidle = 0; /* number of idle children */
147 greg 2.1
148     static struct child_proc {
149     int pid; /* child process id */
150     int fd_send; /* write to child here */
151     int fd_recv; /* read from child here */
152     int npending; /* # rays in process */
153     unsigned long rno[RAYQLEN]; /* working on these rays */
154     } r_proc[MAX_NPROCS]; /* our child processes */
155    
156     static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
157     static int r_send_next; /* next send ray placement */
158     static int r_recv_first; /* position of first unreported ray */
159     static int r_recv_next; /* next receive ray placement */
160    
161     #define sendq_full() (r_send_next >= RAYQLEN)
162    
163    
164     void
165     ray_pinit(otnm, nproc) /* initialize ray-tracing processes */
166     char *otnm;
167     int nproc;
168     {
169     if (nobjects > 0) /* close old calculation */
170     ray_pdone(0);
171    
172     ray_init(otnm); /* load the shared scene */
173    
174     preload_objs(); /* preload auxiliary data */
175    
176     /* set shared memory boundary */
177     shm_boundary = (char *)malloc(16);
178     strcpy(shm_boundary, "SHM_BOUNDARY");
179    
180     r_send_next = 0; /* set up queue */
181     r_recv_first = r_recv_next = RAYQLEN;
182    
183     ray_popen(nproc); /* fork children */
184     }
185    
186    
187     static int
188     ray_pflush() /* send queued rays to idle children */
189     {
190     int nc, n, nw, i, sfirst;
191    
192 schorsch 2.5 if ((ray_pnidle <= 0) | (r_send_next <= 0))
193 greg 2.1 return(0); /* nothing we can send */
194    
195     sfirst = 0; /* divvy up labor */
196 greg 2.3 nc = ray_pnidle;
197     for (i = ray_pnprocs; nc && i--; ) {
198 greg 2.1 if (r_proc[i].npending > 0)
199     continue; /* child looks busy */
200     n = (r_send_next - sfirst)/nc--;
201     if (!n)
202     continue;
203     /* smuggle set size in crtype */
204     r_queue[sfirst].crtype = n;
205     nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
206     sizeof(RAY)*n);
207     if (nw != sizeof(RAY)*n)
208     return(-1); /* write error */
209     r_proc[i].npending = n;
210     while (n--) /* record ray IDs */
211     r_proc[i].rno[n] = r_queue[sfirst+n].rno;
212     sfirst += r_proc[i].npending;
213 greg 2.3 ray_pnidle--; /* now she's busy */
214 greg 2.1 }
215     if (sfirst != r_send_next)
216     error(CONSISTENCY, "code screwup in ray_pflush");
217     r_send_next = 0;
218     return(sfirst); /* return total # sent */
219     }
220    
221    
222     void
223     ray_psend(r) /* add a ray to our send queue */
224     RAY *r;
225     {
226     if (r == NULL)
227     return;
228     /* flush output if necessary */
229     if (sendq_full() && ray_pflush() <= 0)
230     error(INTERNAL, "ray_pflush failed in ray_psend");
231    
232 schorsch 2.4 r_queue[r_send_next] = *r;
233 greg 2.1 r_send_next++;
234     }
235    
236    
237     int
238     ray_pqueue(r) /* queue a ray for computation */
239     RAY *r;
240     {
241     if (r == NULL)
242     return(0);
243     /* check for full send queue */
244     if (sendq_full()) {
245     RAY mySend;
246     int rval;
247 schorsch 2.4 mySend = *r;
248 greg 2.1 /* wait for a result */
249     rval = ray_presult(r, 0);
250     /* put new ray in queue */
251 schorsch 2.4 r_queue[r_send_next] = mySend;
252 greg 2.1 r_send_next++;
253     return(rval); /* done */
254     }
255     /* add ray to send queue */
256 schorsch 2.4 r_queue[r_send_next] = *r;
257 greg 2.1 r_send_next++;
258     /* check for returned ray... */
259     if (r_recv_first >= r_recv_next)
260     return(0);
261     /* ...one is sitting in queue */
262 schorsch 2.4 *r = r_queue[r_recv_first];
263 greg 2.1 r_recv_first++;
264     return(1);
265     }
266    
267    
268     int
269     ray_presult(r, poll) /* check for a completed ray */
270     RAY *r;
271     int poll;
272     {
273     static struct timeval tpoll; /* zero timeval struct */
274     static fd_set readset, errset;
275     int n, ok;
276     register int pn;
277    
278     if (r == NULL)
279     return(0);
280     /* check queued results first */
281     if (r_recv_first < r_recv_next) {
282 schorsch 2.4 *r = r_queue[r_recv_first];
283 greg 2.1 r_recv_first++;
284     return(1);
285     }
286 greg 2.3 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
287 greg 2.1
288     if (ray_pflush() < 0) /* send new rays to process */
289     return(-1);
290     /* reset receive queue */
291     r_recv_first = r_recv_next = RAYQLEN;
292    
293     if (!poll) /* count newly sent unless polling */
294 greg 2.3 n = ray_pnprocs - ray_pnidle;
295 greg 2.1 if (n <= 0) /* return if nothing to await */
296     return(0);
297     getready: /* any children waiting for us? */
298 greg 2.3 for (pn = ray_pnprocs; pn--; )
299 greg 2.1 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
300     FD_ISSET(r_proc[pn].fd_recv, &errset))
301     break;
302     /* call select if we must */
303     if (pn < 0) {
304     FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
305 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
306 greg 2.1 if (r_proc[pn].npending > 0)
307     FD_SET(r_proc[pn].fd_recv, &readset);
308     FD_SET(r_proc[pn].fd_recv, &errset);
309     if (r_proc[pn].fd_recv >= n)
310     n = r_proc[pn].fd_recv + 1;
311     }
312     /* find out who is ready */
313     while ((n = select(n, &readset, (fd_set *)NULL, &errset,
314     poll ? &tpoll : (struct timeval *)NULL)) < 0)
315     if (errno != EINTR) {
316     error(WARNING,
317     "select call failed in ray_presult");
318     ray_pclose(0);
319     return(-1);
320     }
321     if (n > 0) /* go back and get it */
322     goto getready;
323     return(0); /* else poll came up empty */
324     }
325     if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
326     error(CONSISTENCY, "buffer shortage in ray_presult()");
327    
328     /* read rendered ray data */
329     n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
330     sizeof(RAY)*r_proc[pn].npending);
331     if (n > 0) {
332     r_recv_next += n/sizeof(RAY);
333     ok = (n == sizeof(RAY)*r_proc[pn].npending);
334     } else
335     ok = 0;
336     /* reset child's status */
337     FD_CLR(r_proc[pn].fd_recv, &readset);
338     if (n <= 0)
339     FD_CLR(r_proc[pn].fd_recv, &errset);
340     r_proc[pn].npending = 0;
341 greg 2.3 ray_pnidle++;
342 greg 2.1 /* check for rendering errors */
343     if (!ok) {
344     ray_pclose(0); /* process died -- clean up */
345     return(-1);
346     }
347     /* preen returned rays */
348     for (n = r_recv_next - r_recv_first; n--; ) {
349     register RAY *rp = &r_queue[r_recv_first + n];
350     rp->rno = r_proc[pn].rno[n];
351     rp->parent = NULL;
352     rp->newcset = rp->clipset = NULL;
353     rp->rox = NULL;
354     rp->slights = NULL;
355     }
356     /* return first ray received */
357 schorsch 2.4 *r = r_queue[r_recv_first];
358 greg 2.1 r_recv_first++;
359     return(1);
360     }
361    
362    
363     void
364     ray_pdone(freall) /* reap children and free data */
365     int freall;
366     {
367     ray_pclose(0); /* close child processes */
368    
369     if (shm_boundary != NULL) { /* clear shared memory boundary */
370     free((void *)shm_boundary);
371     shm_boundary = NULL;
372     }
373     ray_done(freall); /* free rendering data */
374     }
375    
376    
377     static void
378     ray_pchild(fd_in, fd_out) /* process rays (never returns) */
379     int fd_in;
380     int fd_out;
381     {
382     int n;
383     register int i;
384     /* read each ray request set */
385     while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
386     int n2;
387     if (n % sizeof(RAY))
388     break;
389     n /= sizeof(RAY);
390     /* get smuggled set length */
391     n2 = r_queue[0].crtype - n;
392     if (n2 < 0)
393     error(INTERNAL, "buffer over-read in ray_pchild");
394     if (n2 > 0) { /* read the rest of the set */
395     i = readbuf(fd_in, (char *)(r_queue+n),
396     sizeof(RAY)*n2);
397     if (i != sizeof(RAY)*n2)
398     break;
399     n += n2;
400     }
401     /* evaluate rays */
402     for (i = 0; i < n; i++) {
403     r_queue[i].crtype = r_queue[i].rtype;
404     r_queue[i].parent = NULL;
405     r_queue[i].clipset = NULL;
406     r_queue[i].slights = NULL;
407     r_queue[i].revf = raytrace;
408     samplendx++;
409     rayclear(&r_queue[i]);
410     rayvalue(&r_queue[i]);
411     }
412     /* write back our results */
413     i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
414     if (i != sizeof(RAY)*n)
415     error(SYSTEM, "write error in ray_pchild");
416     }
417     if (n)
418     error(SYSTEM, "read error in ray_pchild");
419     ambsync();
420     quit(0); /* normal exit */
421     }
422    
423    
424     void
425     ray_popen(nadd) /* open the specified # processes */
426     int nadd;
427     {
428     /* check if our table has room */
429 greg 2.3 if (ray_pnprocs + nadd > MAX_NPROCS)
430     nadd = MAX_NPROCS - ray_pnprocs;
431 greg 2.1 if (nadd <= 0)
432     return;
433     fflush(stderr); /* clear pending output */
434     fflush(stdout);
435     while (nadd--) { /* fork each new process */
436     int p0[2], p1[2];
437     if (pipe(p0) < 0 || pipe(p1) < 0)
438     error(SYSTEM, "cannot create pipe");
439 greg 2.3 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
440 greg 2.1 int pn; /* close others' descriptors */
441 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
442 greg 2.1 close(r_proc[pn].fd_send);
443     close(r_proc[pn].fd_recv);
444     }
445     close(p0[0]); close(p1[1]);
446     /* following call never returns */
447     ray_pchild(p1[0], p0[1]);
448     }
449 greg 2.3 if (r_proc[ray_pnprocs].pid < 0)
450 greg 2.1 error(SYSTEM, "cannot fork child process");
451     close(p1[0]); close(p0[1]);
452 greg 2.3 r_proc[ray_pnprocs].fd_send = p1[1];
453     r_proc[ray_pnprocs].fd_recv = p0[0];
454     r_proc[ray_pnprocs].npending = 0;
455     ray_pnprocs++;
456     ray_pnidle++;
457 greg 2.1 }
458     }
459    
460    
461     void
462     ray_pclose(nsub) /* close one or more child processes */
463     int nsub;
464     {
465     static int inclose = 0;
466     RAY res;
467     /* check recursion */
468     if (inclose)
469     return;
470     inclose++;
471     /* check argument */
472 schorsch 2.5 if ((nsub <= 0) | (nsub > ray_pnprocs))
473 greg 2.3 nsub = ray_pnprocs;
474 greg 2.1 /* clear our ray queue */
475     while (ray_presult(&res,0) > 0)
476     ;
477     /* clean up children */
478     while (nsub--) {
479     int status;
480 greg 2.3 ray_pnprocs--;
481     close(r_proc[ray_pnprocs].fd_recv);
482     close(r_proc[ray_pnprocs].fd_send);
483     while (wait(&status) != r_proc[ray_pnprocs].pid)
484 greg 2.1 ;
485     if (status) {
486     sprintf(errmsg,
487     "rendering process %d exited with code %d",
488 greg 2.3 r_proc[ray_pnprocs].pid, status>>8);
489 greg 2.1 error(WARNING, errmsg);
490     }
491 greg 2.3 ray_pnidle--;
492 greg 2.1 }
493     inclose--;
494     }
495    
496    
497     void
498     quit(ec) /* make sure exit is called */
499     int ec;
500     {
501     exit(ec);
502     }