ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.33
Committed: Mon Jun 15 15:44:03 2020 UTC (3 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.32: +7 -2 lines
Log Message:
Optimize rtrace for throughput, especially with ambient cache

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.33 static const char RCSid[] = "$Id: raypcalls.c,v 2.32 2020/04/30 19:30:48 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * raypcalls.c - interface for parallel rendering using Radiance
6     *
7     * External symbols declared in ray.h
8     */
9    
10 greg 2.2 #include "copyright.h"
11 greg 2.1
12     /*
13     * These calls are designed similarly to the ones in raycalls.c,
14     * but allow for multiple rendering processes on the same host
15     * machine. There is no sense in specifying more child processes
16 greg 2.21 * than you have processor cores, but one child may help by allowing
17 greg 2.1 * asynchronous ray computation in an interactive program, and
18     * will protect the caller from fatal rendering errors.
19     *
20 greg 2.21 * You should first read and understand the header in raycalls.c,
21 greg 2.1 * as some things are explained there that are not repated here.
22     *
23     * The first step is opening one or more rendering processes
24     * with a call to ray_pinit(oct, nproc). Before calling fork(),
25     * ray_pinit() loads the octree and data structures into the
26 greg 2.13 * caller's memory, and ray_popen() synchronizes the ambient
27     * file, if any. Shared memory permits all sorts of queries
28 greg 2.21 * that wouldn't be possible otherwise without causing any real
29 greg 2.1 * memory overhead, since all the static data are shared
30 greg 2.21 * between processes. Rays are traced using a simple
31 greg 2.1 * queuing mechanism, explained below.
32     *
33 greg 2.14 * The ray queue buffers RAYQLEN rays before sending to
34 greg 2.21 * children, each of which may internally buffer RAYQLEN rays
35     * during evaluation. Rays are not returned in the order
36     * they are sent when multiple processes are open.
37 greg 2.14 *
38 greg 2.13 * Rays are queued and returned by a single
39 greg 2.1 * ray_pqueue() call. A ray_pqueue() return
40     * value of 0 indicates that no rays are ready
41     * and the queue is not yet full. A return value of 1
42     * indicates that a ray was returned, though it is probably
43     * not the one you just requested. Rays may be identified by
44     * the rno member of the RAY struct, which is incremented
45     * by the rayorigin() call, or may be set explicitly by
46     * the caller. Below is an example call sequence:
47     *
48     * myRay.rorg = ( ray origin point )
49     * myRay.rdir = ( normalized ray direction )
50     * myRay.rmax = ( maximum length, or zero for no limit )
51 greg 2.11 * rayorigin(&myRay, PRIMARY, NULL, NULL);
52 greg 2.1 * myRay.rno = ( my personal ray identifier )
53     * if (ray_pqueue(&myRay) == 1)
54     * { do something with results }
55     *
56     * Note the differences between this and the simpler ray_trace()
57     * call. In particular, the call may or may not return a value
58     * in the passed ray structure. Also, you need to call rayorigin()
59 greg 2.7 * yourself, which is normally called for you by ray_trace(). The
60     * benefit is that ray_pqueue() will trace rays faster in
61 greg 2.1 * proportion to the number of CPUs you have available on your
62     * system. If the ray queue is full before the call, ray_pqueue()
63     * will block until a result is ready so it can queue this one.
64 greg 2.3 * The global int ray_pnidle indicates the number of currently idle
65 greg 2.1 * children. If you want to check for completed rays without blocking,
66     * or get the results from rays that have been queued without
67     * queuing any new ones, the ray_presult() call is for you:
68     *
69     * if (ray_presult(&myRay, 1) == 1)
70     * { do something with results }
71     *
72     * If the second argument is 1, the call won't block when
73     * results aren't ready, but will immediately return 0.
74     * If the second argument is 0, the call will block
75     * until a value is available, returning 0 only if the
76 greg 2.26 * queue is completely empty. Setting the second argument
77     * to -1 returns 0 unless a ray is ready in the queue and
78     * no system calls are needed. A negative return value
79 greg 2.1 * indicates that a rendering process died. If this
80 greg 2.21 * happens, ray_pclose(0) is automatically called to close
81 greg 2.3 * all child processes, and ray_pnprocs is set to zero.
82 greg 2.1 *
83     * If you just want to fill the ray queue without checking for
84 greg 2.3 * results, check ray_pnidle and call ray_psend():
85 greg 2.1 *
86 greg 2.3 * while (ray_pnidle) {
87 greg 2.1 * ( set up ray )
88     * ray_psend(&myRay);
89     * }
90     *
91 greg 2.25 * Note that it is a mistake to call ra_psend() when
92     * ray_pnidle is zero, and nothing will be sent in
93     * this case. Otherwise, the ray_presult() and/or ray_pqueue()
94     * functions may be called subsequently to read back the results
95     * of rays queued by ray_psend().
96 greg 2.1 *
97     * When you are done, you may call ray_pdone(1) to close
98     * all child processes and clean up memory used by Radiance.
99     * Any queued ray calculations will be awaited and discarded.
100     * As with ray_done(), ray_pdone(0) hangs onto data files
101     * and fonts that are likely to be used in subsequent renderings.
102 greg 2.21 * Whether you need to clean up memory or not, you should
103     * at least call ray_pclose(0) to await the child processes.
104 greg 2.23 * The caller should define a quit() function that calls
105     * ray_pclose(0) if ray_pnprocs > 0.
106 greg 2.1 *
107     * Warning: You cannot affect any of the rendering processes
108     * by changing global parameter values onece ray_pinit() has
109     * been called. Changing global parameters will have no effect
110     * until the next call to ray_pinit(), which restarts everything.
111     * If you just want to reap children so that you can alter the
112     * rendering parameters without reloading the scene, use the
113     * ray_pclose(0) and ray_popen(nproc) calls to close
114 greg 2.7 * then restart the child processes after the changes are made.
115 greg 2.1 *
116     * Note: These routines are written to coordinate with the
117     * definitions in raycalls.c, and in fact depend on them.
118     * If you want to trace a ray and get a result synchronously,
119 greg 2.13 * use the ray_trace() call to compute it in the parent process.
120 greg 2.7 * This will not interfere with any subprocess calculations,
121     * but beware that a fatal error may end with a call to quit().
122 greg 2.1 *
123     * Note: One of the advantages of using separate processes
124     * is that it gives the calling program some immunity from
125     * fatal rendering errors. As discussed in raycalls.c,
126     * Radiance tends to throw up its hands and exit at the
127     * first sign of trouble, calling quit() to return control
128 greg 2.7 * to the top level. Although you can avoid exit() with
129 greg 2.1 * your own longjmp() in quit(), the cleanup afterwards
130     * is always suspect. Through the use of subprocesses,
131     * we avoid this pitfall by closing the processes and
132     * returning a negative value from ray_pqueue() or
133     * ray_presult(). If you get a negative value from either
134     * of these calls, you can assume that the processes have
135 greg 2.21 * been cleaned up with a call to ray_pclose(), though you
136 greg 2.1 * will have to call ray_pdone() yourself if you want to
137 greg 2.7 * free memory. Obviously, you cannot continue rendering
138     * without risking further errors, but otherwise your
139     * process should not be compromised.
140 greg 2.1 */
141    
142 schorsch 2.6 #include "rtprocess.h"
143 greg 2.1 #include "ray.h"
144 schorsch 2.6 #include "ambient.h"
145 greg 2.18 #include <sys/types.h>
146     #include <sys/wait.h>
147 greg 2.1 #include "selcall.h"
148    
149     #ifndef RAYQLEN
150 greg 2.32 #define RAYQLEN 24 /* # rays to send at once */
151 greg 2.1 #endif
152    
153     #ifndef MAX_RPROCS
154     #if (FD_SETSIZE/2-4 < 64)
155     #define MAX_NPROCS (FD_SETSIZE/2-4)
156     #else
157     #define MAX_NPROCS 64 /* max. # rendering processes */
158     #endif
159     #endif
160    
161     extern char *shm_boundary; /* boundary of shared memory */
162    
163 greg 2.3 int ray_pnprocs = 0; /* number of child processes */
164     int ray_pnidle = 0; /* number of idle children */
165 greg 2.33 int ray_pnbatch = 0; /* throughput over responsiveness? */
166 greg 2.1
167     static struct child_proc {
168 greg 2.29 RT_PID pid; /* child process id */
169 greg 2.1 int fd_send; /* write to child here */
170     int fd_recv; /* read from child here */
171     int npending; /* # rays in process */
172 greg 2.21 RNUMBER rno[RAYQLEN]; /* working on these rays */
173 greg 2.1 } r_proc[MAX_NPROCS]; /* our child processes */
174    
175     static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
176 greg 2.23 static int r_send_next = 0; /* next send ray placement */
177     static int r_recv_first = RAYQLEN; /* position of first unreported ray */
178     static int r_recv_next = RAYQLEN; /* next received ray placement */
179 greg 2.1
180 greg 2.28 static int samplestep = 1; /* sample step size */
181    
182 greg 2.1 #define sendq_full() (r_send_next >= RAYQLEN)
183    
184 schorsch 2.6 static int ray_pflush(void);
185 greg 2.13 static void ray_pchild(int fd_in, int fd_out);
186 greg 2.1
187 schorsch 2.6
188 greg 2.22 void
189 schorsch 2.6 ray_pinit( /* initialize ray-tracing processes */
190     char *otnm,
191     int nproc
192     )
193 greg 2.1 {
194     if (nobjects > 0) /* close old calculation */
195     ray_pdone(0);
196    
197     ray_init(otnm); /* load the shared scene */
198    
199     ray_popen(nproc); /* fork children */
200     }
201    
202    
203     static int
204 schorsch 2.6 ray_pflush(void) /* send queued rays to idle children */
205 greg 2.1 {
206     int nc, n, nw, i, sfirst;
207    
208 schorsch 2.5 if ((ray_pnidle <= 0) | (r_send_next <= 0))
209 greg 2.1 return(0); /* nothing we can send */
210    
211     sfirst = 0; /* divvy up labor */
212 greg 2.3 nc = ray_pnidle;
213     for (i = ray_pnprocs; nc && i--; ) {
214 greg 2.1 if (r_proc[i].npending > 0)
215     continue; /* child looks busy */
216 greg 2.33 n = r_send_next - sfirst;
217     if (ray_pnbatch)
218     nc--; /* maximize bundling for batch calc */
219     else
220     n /= nc--; /* distribute work for interactivity */
221 greg 2.1 if (!n)
222     continue;
223     /* smuggle set size in crtype */
224     r_queue[sfirst].crtype = n;
225     nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
226     sizeof(RAY)*n);
227     if (nw != sizeof(RAY)*n)
228     return(-1); /* write error */
229     r_proc[i].npending = n;
230     while (n--) /* record ray IDs */
231     r_proc[i].rno[n] = r_queue[sfirst+n].rno;
232     sfirst += r_proc[i].npending;
233 greg 2.3 ray_pnidle--; /* now she's busy */
234 greg 2.1 }
235     if (sfirst != r_send_next)
236 greg 2.24 error(CONSISTENCY, "code screwup in ray_pflush()");
237 greg 2.1 r_send_next = 0;
238     return(sfirst); /* return total # sent */
239     }
240    
241    
242 greg 2.25 int
243 schorsch 2.6 ray_psend( /* add a ray to our send queue */
244     RAY *r
245     )
246 greg 2.1 {
247 greg 2.25 int rv;
248    
249     if ((r == NULL) | (ray_pnidle <= 0))
250     return(0);
251 greg 2.1 /* flush output if necessary */
252 greg 2.25 if (sendq_full() && (rv = ray_pflush()) <= 0)
253     return(rv);
254 greg 2.1
255 greg 2.14 r_queue[r_send_next++] = *r;
256 greg 2.25 return(1);
257 greg 2.1 }
258    
259    
260 greg 2.22 int
261 schorsch 2.6 ray_pqueue( /* queue a ray for computation */
262     RAY *r
263     )
264 greg 2.1 {
265     if (r == NULL)
266     return(0);
267     /* check for full send queue */
268     if (sendq_full()) {
269 greg 2.19 RAY mySend = *r;
270 greg 2.1 /* wait for a result */
271 greg 2.19 if (ray_presult(r, 0) <= 0)
272     return(-1);
273 greg 2.1 /* put new ray in queue */
274 greg 2.14 r_queue[r_send_next++] = mySend;
275 greg 2.25
276 greg 2.19 return(1);
277 greg 2.1 }
278 greg 2.13 /* else add ray to send queue */
279 greg 2.14 r_queue[r_send_next++] = *r;
280 greg 2.1 /* check for returned ray... */
281     if (r_recv_first >= r_recv_next)
282     return(0);
283     /* ...one is sitting in queue */
284 greg 2.14 *r = r_queue[r_recv_first++];
285 greg 2.1 return(1);
286     }
287    
288    
289 greg 2.22 int
290 schorsch 2.6 ray_presult( /* check for a completed ray */
291     RAY *r,
292     int poll
293     )
294 greg 2.1 {
295     static struct timeval tpoll; /* zero timeval struct */
296     static fd_set readset, errset;
297     int n, ok;
298 greg 2.30 int pn;
299 greg 2.1
300     if (r == NULL)
301     return(0);
302     /* check queued results first */
303     if (r_recv_first < r_recv_next) {
304 greg 2.14 *r = r_queue[r_recv_first++];
305 greg 2.1 return(1);
306     }
307 greg 2.23 if (poll < 0) /* immediate polling mode? */
308     return(0);
309    
310 greg 2.3 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
311 greg 2.1
312     if (ray_pflush() < 0) /* send new rays to process */
313     return(-1);
314     /* reset receive queue */
315     r_recv_first = r_recv_next = RAYQLEN;
316    
317     if (!poll) /* count newly sent unless polling */
318 greg 2.3 n = ray_pnprocs - ray_pnidle;
319 greg 2.1 if (n <= 0) /* return if nothing to await */
320     return(0);
321 greg 2.16 if (!poll && ray_pnprocs == 1) /* one process -> skip select() */
322     FD_SET(r_proc[0].fd_recv, &readset);
323    
324 greg 2.1 getready: /* any children waiting for us? */
325 greg 2.3 for (pn = ray_pnprocs; pn--; )
326 greg 2.1 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
327     FD_ISSET(r_proc[pn].fd_recv, &errset))
328     break;
329 greg 2.22 /* call select() if we must */
330 greg 2.1 if (pn < 0) {
331     FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
332 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
333 greg 2.1 if (r_proc[pn].npending > 0)
334     FD_SET(r_proc[pn].fd_recv, &readset);
335     FD_SET(r_proc[pn].fd_recv, &errset);
336     if (r_proc[pn].fd_recv >= n)
337     n = r_proc[pn].fd_recv + 1;
338     }
339     /* find out who is ready */
340     while ((n = select(n, &readset, (fd_set *)NULL, &errset,
341     poll ? &tpoll : (struct timeval *)NULL)) < 0)
342     if (errno != EINTR) {
343     error(WARNING,
344 greg 2.24 "select call failed in ray_presult()");
345 greg 2.1 ray_pclose(0);
346     return(-1);
347     }
348     if (n > 0) /* go back and get it */
349     goto getready;
350     return(0); /* else poll came up empty */
351     }
352     if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
353     error(CONSISTENCY, "buffer shortage in ray_presult()");
354    
355     /* read rendered ray data */
356     n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
357     sizeof(RAY)*r_proc[pn].npending);
358     if (n > 0) {
359     r_recv_next += n/sizeof(RAY);
360     ok = (n == sizeof(RAY)*r_proc[pn].npending);
361     } else
362     ok = 0;
363     /* reset child's status */
364     FD_CLR(r_proc[pn].fd_recv, &readset);
365     if (n <= 0)
366     FD_CLR(r_proc[pn].fd_recv, &errset);
367     r_proc[pn].npending = 0;
368 greg 2.3 ray_pnidle++;
369 greg 2.1 /* check for rendering errors */
370     if (!ok) {
371     ray_pclose(0); /* process died -- clean up */
372     return(-1);
373     }
374     /* preen returned rays */
375     for (n = r_recv_next - r_recv_first; n--; ) {
376 greg 2.30 RAY *rp = &r_queue[r_recv_first + n];
377 greg 2.1 rp->rno = r_proc[pn].rno[n];
378     rp->parent = NULL;
379     rp->newcset = rp->clipset = NULL;
380     rp->rox = NULL;
381     rp->slights = NULL;
382     }
383     /* return first ray received */
384 greg 2.13 *r = r_queue[r_recv_first++];
385 greg 2.1 return(1);
386     }
387    
388    
389 greg 2.22 void
390 schorsch 2.6 ray_pdone( /* reap children and free data */
391     int freall
392     )
393 greg 2.1 {
394     ray_pclose(0); /* close child processes */
395    
396     if (shm_boundary != NULL) { /* clear shared memory boundary */
397     free((void *)shm_boundary);
398     shm_boundary = NULL;
399     }
400 greg 2.23
401 greg 2.1 ray_done(freall); /* free rendering data */
402     }
403    
404    
405     static void
406 schorsch 2.6 ray_pchild( /* process rays (never returns) */
407     int fd_in,
408     int fd_out
409     )
410 greg 2.1 {
411     int n;
412 greg 2.30 int i;
413 greg 2.15 /* flag child process for quit() */
414     ray_pnprocs = -1;
415 greg 2.1 /* read each ray request set */
416     while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
417     int n2;
418 greg 2.12 if (n < sizeof(RAY))
419 greg 2.1 break;
420     /* get smuggled set length */
421 greg 2.12 n2 = sizeof(RAY)*r_queue[0].crtype - n;
422 greg 2.1 if (n2 < 0)
423 greg 2.24 error(INTERNAL, "buffer over-read in ray_pchild()");
424 greg 2.1 if (n2 > 0) { /* read the rest of the set */
425 greg 2.12 i = readbuf(fd_in, (char *)r_queue + n, n2);
426     if (i != n2)
427 greg 2.1 break;
428     n += n2;
429     }
430 greg 2.12 n /= sizeof(RAY);
431 greg 2.1 /* evaluate rays */
432     for (i = 0; i < n; i++) {
433     r_queue[i].crtype = r_queue[i].rtype;
434     r_queue[i].parent = NULL;
435     r_queue[i].clipset = NULL;
436     r_queue[i].slights = NULL;
437 greg 2.21 r_queue[i].rlvl = 0;
438 greg 2.28 samplendx += samplestep;
439 greg 2.1 rayclear(&r_queue[i]);
440     rayvalue(&r_queue[i]);
441     }
442     /* write back our results */
443     i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
444     if (i != sizeof(RAY)*n)
445 greg 2.24 error(SYSTEM, "write error in ray_pchild()");
446 greg 2.1 }
447     if (n)
448 greg 2.24 error(SYSTEM, "read error in ray_pchild()");
449 greg 2.1 ambsync();
450     quit(0); /* normal exit */
451     }
452    
453    
454 greg 2.22 void
455 schorsch 2.6 ray_popen( /* open the specified # processes */
456     int nadd
457     )
458 greg 2.1 {
459     /* check if our table has room */
460 greg 2.3 if (ray_pnprocs + nadd > MAX_NPROCS)
461     nadd = MAX_NPROCS - ray_pnprocs;
462 greg 2.1 if (nadd <= 0)
463     return;
464 greg 2.13 ambsync(); /* load any new ambient values */
465 greg 2.20 if (shm_boundary == NULL) { /* first child process? */
466     preload_objs(); /* preload auxiliary data */
467     /* set shared memory boundary */
468     shm_boundary = (char *)malloc(16);
469     strcpy(shm_boundary, "SHM_BOUNDARY");
470     }
471 greg 2.13 fflush(NULL); /* clear pending output */
472 greg 2.28 samplestep = ray_pnprocs + nadd;
473 greg 2.1 while (nadd--) { /* fork each new process */
474     int p0[2], p1[2];
475     if (pipe(p0) < 0 || pipe(p1) < 0)
476     error(SYSTEM, "cannot create pipe");
477 greg 2.3 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
478 greg 2.1 int pn; /* close others' descriptors */
479 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
480 greg 2.1 close(r_proc[pn].fd_send);
481     close(r_proc[pn].fd_recv);
482     }
483     close(p0[0]); close(p1[1]);
484 greg 2.24 close(0); /* don't share stdin */
485 greg 2.1 /* following call never returns */
486     ray_pchild(p1[0], p0[1]);
487     }
488 greg 2.3 if (r_proc[ray_pnprocs].pid < 0)
489 greg 2.1 error(SYSTEM, "cannot fork child process");
490     close(p1[0]); close(p0[1]);
491 greg 2.28 if (rand_samp) /* decorrelate random sequence */
492     srandom(random());
493     else
494     samplendx++;
495 greg 2.9 /*
496     * Close write stream on exec to avoid multiprocessing deadlock.
497     * No use in read stream without it, so set flag there as well.
498     */
499     fcntl(p1[1], F_SETFD, FD_CLOEXEC);
500     fcntl(p0[0], F_SETFD, FD_CLOEXEC);
501 greg 2.3 r_proc[ray_pnprocs].fd_send = p1[1];
502     r_proc[ray_pnprocs].fd_recv = p0[0];
503     r_proc[ray_pnprocs].npending = 0;
504     ray_pnprocs++;
505     ray_pnidle++;
506 greg 2.1 }
507     }
508    
509    
510 greg 2.22 void
511 schorsch 2.6 ray_pclose( /* close one or more child processes */
512     int nsub
513     )
514 greg 2.1 {
515     static int inclose = 0;
516 greg 2.29 RAY res;
517     int i, status = 0;
518 greg 2.1 /* check recursion */
519     if (inclose)
520     return;
521     inclose++;
522 greg 2.26 /* check no child / in child */
523     if (ray_pnprocs <= 0)
524     return;
525 greg 2.1 /* check argument */
526 schorsch 2.5 if ((nsub <= 0) | (nsub > ray_pnprocs))
527 greg 2.3 nsub = ray_pnprocs;
528 greg 2.1 /* clear our ray queue */
529     while (ray_presult(&res,0) > 0)
530     ;
531 greg 2.23 r_send_next = 0; /* hard reset in case of error */
532     r_recv_first = r_recv_next = RAYQLEN;
533 greg 2.29 /* close send pipes */
534     for (i = ray_pnprocs-nsub; i < ray_pnprocs; i++)
535     close(r_proc[i].fd_send);
536    
537     if (nsub == 1) { /* awaiting single process? */
538     if (waitpid(r_proc[ray_pnprocs-1].pid, &status, 0) < 0)
539 greg 2.8 status = 127<<8;
540 greg 2.29 close(r_proc[ray_pnprocs-1].fd_recv);
541     } else /* else unordered wait */
542     for (i = 0; i < nsub; ) {
543     int j, mystatus;
544     RT_PID pid = wait(&mystatus);
545     for (j = ray_pnprocs-nsub; j < ray_pnprocs; j++)
546     if (r_proc[j].pid == pid) {
547     if (mystatus)
548     status = mystatus;
549     close(r_proc[j].fd_recv);
550     ++i;
551     }
552 greg 2.1 }
553 greg 2.29 ray_pnprocs -= nsub;
554     ray_pnidle -= nsub;
555     if (status) {
556     sprintf(errmsg, "rendering process exited with code %d", status>>8);
557     error(WARNING, errmsg);
558 greg 2.1 }
559     inclose--;
560     }