ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.24
Committed: Sat Dec 12 23:08:13 2009 UTC (14 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.23: +9 -8 lines
Log Message:
Bug fixes and performance improvements to rtrace -n option

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.24 static const char RCSid[] = "$Id: raypcalls.c,v 2.23 2009/12/12 19:01:00 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * raypcalls.c - interface for parallel rendering using Radiance
6     *
7     * External symbols declared in ray.h
8     */
9    
10 greg 2.2 #include "copyright.h"
11 greg 2.1
12     /*
13     * These calls are designed similarly to the ones in raycalls.c,
14     * but allow for multiple rendering processes on the same host
15     * machine. There is no sense in specifying more child processes
16 greg 2.21 * than you have processor cores, but one child may help by allowing
17 greg 2.1 * asynchronous ray computation in an interactive program, and
18     * will protect the caller from fatal rendering errors.
19     *
20 greg 2.21 * You should first read and understand the header in raycalls.c,
21 greg 2.1 * as some things are explained there that are not repated here.
22     *
23     * The first step is opening one or more rendering processes
24     * with a call to ray_pinit(oct, nproc). Before calling fork(),
25     * ray_pinit() loads the octree and data structures into the
26 greg 2.13 * caller's memory, and ray_popen() synchronizes the ambient
27     * file, if any. Shared memory permits all sorts of queries
28 greg 2.21 * that wouldn't be possible otherwise without causing any real
29 greg 2.1 * memory overhead, since all the static data are shared
30 greg 2.21 * between processes. Rays are traced using a simple
31 greg 2.1 * queuing mechanism, explained below.
32     *
33 greg 2.14 * The ray queue buffers RAYQLEN rays before sending to
34 greg 2.21 * children, each of which may internally buffer RAYQLEN rays
35     * during evaluation. Rays are not returned in the order
36     * they are sent when multiple processes are open.
37 greg 2.14 *
38 greg 2.13 * Rays are queued and returned by a single
39 greg 2.1 * ray_pqueue() call. A ray_pqueue() return
40     * value of 0 indicates that no rays are ready
41     * and the queue is not yet full. A return value of 1
42     * indicates that a ray was returned, though it is probably
43     * not the one you just requested. Rays may be identified by
44     * the rno member of the RAY struct, which is incremented
45     * by the rayorigin() call, or may be set explicitly by
46     * the caller. Below is an example call sequence:
47     *
48     * myRay.rorg = ( ray origin point )
49     * myRay.rdir = ( normalized ray direction )
50     * myRay.rmax = ( maximum length, or zero for no limit )
51 greg 2.11 * rayorigin(&myRay, PRIMARY, NULL, NULL);
52 greg 2.1 * myRay.rno = ( my personal ray identifier )
53     * if (ray_pqueue(&myRay) == 1)
54     * { do something with results }
55     *
56     * Note the differences between this and the simpler ray_trace()
57     * call. In particular, the call may or may not return a value
58     * in the passed ray structure. Also, you need to call rayorigin()
59 greg 2.7 * yourself, which is normally called for you by ray_trace(). The
60     * benefit is that ray_pqueue() will trace rays faster in
61 greg 2.1 * proportion to the number of CPUs you have available on your
62     * system. If the ray queue is full before the call, ray_pqueue()
63     * will block until a result is ready so it can queue this one.
64 greg 2.3 * The global int ray_pnidle indicates the number of currently idle
65 greg 2.1 * children. If you want to check for completed rays without blocking,
66     * or get the results from rays that have been queued without
67     * queuing any new ones, the ray_presult() call is for you:
68     *
69     * if (ray_presult(&myRay, 1) == 1)
70     * { do something with results }
71     *
72     * If the second argument is 1, the call won't block when
73     * results aren't ready, but will immediately return 0.
74 greg 2.23 * (A special value of -1 returns 0 unless a ray is
75     * ready in the queue and no system calls are needed.)
76 greg 2.1 * If the second argument is 0, the call will block
77     * until a value is available, returning 0 only if the
78     * queue is completely empty. A negative return value
79     * indicates that a rendering process died. If this
80 greg 2.21 * happens, ray_pclose(0) is automatically called to close
81 greg 2.3 * all child processes, and ray_pnprocs is set to zero.
82 greg 2.1 *
83     * If you just want to fill the ray queue without checking for
84 greg 2.3 * results, check ray_pnidle and call ray_psend():
85 greg 2.1 *
86 greg 2.3 * while (ray_pnidle) {
87 greg 2.1 * ( set up ray )
88     * ray_psend(&myRay);
89     * }
90     *
91 greg 2.7 * Note that it is a fatal error to call ra_psend() when
92     * ray_pnidle is zero. The ray_presult() and/or ray_pqueue()
93     * functions may be called subsequently to read back the results.
94 greg 2.1 *
95     * When you are done, you may call ray_pdone(1) to close
96     * all child processes and clean up memory used by Radiance.
97     * Any queued ray calculations will be awaited and discarded.
98     * As with ray_done(), ray_pdone(0) hangs onto data files
99     * and fonts that are likely to be used in subsequent renderings.
100 greg 2.21 * Whether you need to clean up memory or not, you should
101     * at least call ray_pclose(0) to await the child processes.
102 greg 2.23 * The caller should define a quit() function that calls
103     * ray_pclose(0) if ray_pnprocs > 0.
104 greg 2.1 *
105     * Warning: You cannot affect any of the rendering processes
106     * by changing global parameter values onece ray_pinit() has
107     * been called. Changing global parameters will have no effect
108     * until the next call to ray_pinit(), which restarts everything.
109     * If you just want to reap children so that you can alter the
110     * rendering parameters without reloading the scene, use the
111     * ray_pclose(0) and ray_popen(nproc) calls to close
112 greg 2.7 * then restart the child processes after the changes are made.
113 greg 2.1 *
114     * Note: These routines are written to coordinate with the
115     * definitions in raycalls.c, and in fact depend on them.
116     * If you want to trace a ray and get a result synchronously,
117 greg 2.13 * use the ray_trace() call to compute it in the parent process.
118 greg 2.7 * This will not interfere with any subprocess calculations,
119     * but beware that a fatal error may end with a call to quit().
120 greg 2.1 *
121     * Note: One of the advantages of using separate processes
122     * is that it gives the calling program some immunity from
123     * fatal rendering errors. As discussed in raycalls.c,
124     * Radiance tends to throw up its hands and exit at the
125     * first sign of trouble, calling quit() to return control
126 greg 2.7 * to the top level. Although you can avoid exit() with
127 greg 2.1 * your own longjmp() in quit(), the cleanup afterwards
128     * is always suspect. Through the use of subprocesses,
129     * we avoid this pitfall by closing the processes and
130     * returning a negative value from ray_pqueue() or
131     * ray_presult(). If you get a negative value from either
132     * of these calls, you can assume that the processes have
133 greg 2.21 * been cleaned up with a call to ray_pclose(), though you
134 greg 2.1 * will have to call ray_pdone() yourself if you want to
135 greg 2.7 * free memory. Obviously, you cannot continue rendering
136     * without risking further errors, but otherwise your
137     * process should not be compromised.
138 greg 2.1 */
139    
140 schorsch 2.6 #include "rtprocess.h"
141 greg 2.1 #include "ray.h"
142 schorsch 2.6 #include "ambient.h"
143 greg 2.18 #include <sys/types.h>
144     #include <sys/wait.h>
145 greg 2.1 #include "selcall.h"
146    
147     #ifndef RAYQLEN
148 greg 2.13 #define RAYQLEN 12 /* # rays to send at once */
149 greg 2.1 #endif
150    
151     #ifndef MAX_RPROCS
152     #if (FD_SETSIZE/2-4 < 64)
153     #define MAX_NPROCS (FD_SETSIZE/2-4)
154     #else
155     #define MAX_NPROCS 64 /* max. # rendering processes */
156     #endif
157     #endif
158    
159     extern char *shm_boundary; /* boundary of shared memory */
160    
161 greg 2.3 int ray_pnprocs = 0; /* number of child processes */
162     int ray_pnidle = 0; /* number of idle children */
163 greg 2.1
164     static struct child_proc {
165     int pid; /* child process id */
166     int fd_send; /* write to child here */
167     int fd_recv; /* read from child here */
168     int npending; /* # rays in process */
169 greg 2.21 RNUMBER rno[RAYQLEN]; /* working on these rays */
170 greg 2.1 } r_proc[MAX_NPROCS]; /* our child processes */
171    
172     static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
173 greg 2.23 static int r_send_next = 0; /* next send ray placement */
174     static int r_recv_first = RAYQLEN; /* position of first unreported ray */
175     static int r_recv_next = RAYQLEN; /* next received ray placement */
176 greg 2.1
177     #define sendq_full() (r_send_next >= RAYQLEN)
178    
179 schorsch 2.6 static int ray_pflush(void);
180 greg 2.13 static void ray_pchild(int fd_in, int fd_out);
181 greg 2.1
182 schorsch 2.6
183 greg 2.22 void
184 schorsch 2.6 ray_pinit( /* initialize ray-tracing processes */
185     char *otnm,
186     int nproc
187     )
188 greg 2.1 {
189     if (nobjects > 0) /* close old calculation */
190     ray_pdone(0);
191    
192     ray_init(otnm); /* load the shared scene */
193    
194     ray_popen(nproc); /* fork children */
195     }
196    
197    
198     static int
199 schorsch 2.6 ray_pflush(void) /* send queued rays to idle children */
200 greg 2.1 {
201     int nc, n, nw, i, sfirst;
202    
203 schorsch 2.5 if ((ray_pnidle <= 0) | (r_send_next <= 0))
204 greg 2.1 return(0); /* nothing we can send */
205    
206     sfirst = 0; /* divvy up labor */
207 greg 2.3 nc = ray_pnidle;
208     for (i = ray_pnprocs; nc && i--; ) {
209 greg 2.1 if (r_proc[i].npending > 0)
210     continue; /* child looks busy */
211     n = (r_send_next - sfirst)/nc--;
212     if (!n)
213     continue;
214     /* smuggle set size in crtype */
215     r_queue[sfirst].crtype = n;
216     nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
217     sizeof(RAY)*n);
218     if (nw != sizeof(RAY)*n)
219     return(-1); /* write error */
220     r_proc[i].npending = n;
221     while (n--) /* record ray IDs */
222     r_proc[i].rno[n] = r_queue[sfirst+n].rno;
223     sfirst += r_proc[i].npending;
224 greg 2.3 ray_pnidle--; /* now she's busy */
225 greg 2.1 }
226     if (sfirst != r_send_next)
227 greg 2.24 error(CONSISTENCY, "code screwup in ray_pflush()");
228 greg 2.1 r_send_next = 0;
229     return(sfirst); /* return total # sent */
230     }
231    
232    
233 greg 2.22 void
234 schorsch 2.6 ray_psend( /* add a ray to our send queue */
235     RAY *r
236     )
237 greg 2.1 {
238     if (r == NULL)
239     return;
240     /* flush output if necessary */
241     if (sendq_full() && ray_pflush() <= 0)
242 greg 2.24 error(INTERNAL, "ray_pflush failed in ray_psend()");
243 greg 2.1
244 greg 2.14 r_queue[r_send_next++] = *r;
245 greg 2.1 }
246    
247    
248 greg 2.22 int
249 schorsch 2.6 ray_pqueue( /* queue a ray for computation */
250     RAY *r
251     )
252 greg 2.1 {
253     if (r == NULL)
254     return(0);
255     /* check for full send queue */
256     if (sendq_full()) {
257 greg 2.19 RAY mySend = *r;
258 greg 2.1 /* wait for a result */
259 greg 2.19 if (ray_presult(r, 0) <= 0)
260     return(-1);
261 greg 2.1 /* put new ray in queue */
262 greg 2.14 r_queue[r_send_next++] = mySend;
263 greg 2.19 /* XXX r_send_next may now be > RAYQLEN */
264     return(1);
265 greg 2.1 }
266 greg 2.13 /* else add ray to send queue */
267 greg 2.14 r_queue[r_send_next++] = *r;
268 greg 2.1 /* check for returned ray... */
269     if (r_recv_first >= r_recv_next)
270     return(0);
271     /* ...one is sitting in queue */
272 greg 2.14 *r = r_queue[r_recv_first++];
273 greg 2.1 return(1);
274     }
275    
276    
277 greg 2.22 int
278 schorsch 2.6 ray_presult( /* check for a completed ray */
279     RAY *r,
280     int poll
281     )
282 greg 2.1 {
283     static struct timeval tpoll; /* zero timeval struct */
284     static fd_set readset, errset;
285     int n, ok;
286     register int pn;
287    
288     if (r == NULL)
289     return(0);
290     /* check queued results first */
291     if (r_recv_first < r_recv_next) {
292 greg 2.14 *r = r_queue[r_recv_first++];
293 greg 2.1 return(1);
294     }
295 greg 2.23 if (poll < 0) /* immediate polling mode? */
296     return(0);
297    
298 greg 2.3 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
299 greg 2.1
300     if (ray_pflush() < 0) /* send new rays to process */
301     return(-1);
302     /* reset receive queue */
303     r_recv_first = r_recv_next = RAYQLEN;
304    
305     if (!poll) /* count newly sent unless polling */
306 greg 2.3 n = ray_pnprocs - ray_pnidle;
307 greg 2.1 if (n <= 0) /* return if nothing to await */
308     return(0);
309 greg 2.16 if (!poll && ray_pnprocs == 1) /* one process -> skip select() */
310     FD_SET(r_proc[0].fd_recv, &readset);
311    
312 greg 2.1 getready: /* any children waiting for us? */
313 greg 2.3 for (pn = ray_pnprocs; pn--; )
314 greg 2.1 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
315     FD_ISSET(r_proc[pn].fd_recv, &errset))
316     break;
317 greg 2.22 /* call select() if we must */
318 greg 2.1 if (pn < 0) {
319     FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
320 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
321 greg 2.1 if (r_proc[pn].npending > 0)
322     FD_SET(r_proc[pn].fd_recv, &readset);
323     FD_SET(r_proc[pn].fd_recv, &errset);
324     if (r_proc[pn].fd_recv >= n)
325     n = r_proc[pn].fd_recv + 1;
326     }
327     /* find out who is ready */
328     while ((n = select(n, &readset, (fd_set *)NULL, &errset,
329     poll ? &tpoll : (struct timeval *)NULL)) < 0)
330     if (errno != EINTR) {
331     error(WARNING,
332 greg 2.24 "select call failed in ray_presult()");
333 greg 2.1 ray_pclose(0);
334     return(-1);
335     }
336     if (n > 0) /* go back and get it */
337     goto getready;
338     return(0); /* else poll came up empty */
339     }
340     if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
341     error(CONSISTENCY, "buffer shortage in ray_presult()");
342    
343     /* read rendered ray data */
344     n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
345     sizeof(RAY)*r_proc[pn].npending);
346     if (n > 0) {
347     r_recv_next += n/sizeof(RAY);
348     ok = (n == sizeof(RAY)*r_proc[pn].npending);
349     } else
350     ok = 0;
351     /* reset child's status */
352     FD_CLR(r_proc[pn].fd_recv, &readset);
353     if (n <= 0)
354     FD_CLR(r_proc[pn].fd_recv, &errset);
355     r_proc[pn].npending = 0;
356 greg 2.3 ray_pnidle++;
357 greg 2.1 /* check for rendering errors */
358     if (!ok) {
359     ray_pclose(0); /* process died -- clean up */
360     return(-1);
361     }
362     /* preen returned rays */
363     for (n = r_recv_next - r_recv_first; n--; ) {
364     register RAY *rp = &r_queue[r_recv_first + n];
365     rp->rno = r_proc[pn].rno[n];
366     rp->parent = NULL;
367     rp->newcset = rp->clipset = NULL;
368     rp->rox = NULL;
369     rp->slights = NULL;
370     }
371     /* return first ray received */
372 greg 2.13 *r = r_queue[r_recv_first++];
373 greg 2.1 return(1);
374     }
375    
376    
377 greg 2.22 void
378 schorsch 2.6 ray_pdone( /* reap children and free data */
379     int freall
380     )
381 greg 2.1 {
382     ray_pclose(0); /* close child processes */
383    
384     if (shm_boundary != NULL) { /* clear shared memory boundary */
385     free((void *)shm_boundary);
386     shm_boundary = NULL;
387     }
388 greg 2.23
389 greg 2.1 ray_done(freall); /* free rendering data */
390     }
391    
392    
393     static void
394 schorsch 2.6 ray_pchild( /* process rays (never returns) */
395     int fd_in,
396     int fd_out
397     )
398 greg 2.1 {
399     int n;
400     register int i;
401 greg 2.15 /* flag child process for quit() */
402     ray_pnprocs = -1;
403 greg 2.1 /* read each ray request set */
404     while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
405     int n2;
406 greg 2.12 if (n < sizeof(RAY))
407 greg 2.1 break;
408     /* get smuggled set length */
409 greg 2.12 n2 = sizeof(RAY)*r_queue[0].crtype - n;
410 greg 2.1 if (n2 < 0)
411 greg 2.24 error(INTERNAL, "buffer over-read in ray_pchild()");
412 greg 2.1 if (n2 > 0) { /* read the rest of the set */
413 greg 2.12 i = readbuf(fd_in, (char *)r_queue + n, n2);
414     if (i != n2)
415 greg 2.1 break;
416     n += n2;
417     }
418 greg 2.12 n /= sizeof(RAY);
419 greg 2.1 /* evaluate rays */
420     for (i = 0; i < n; i++) {
421     r_queue[i].crtype = r_queue[i].rtype;
422     r_queue[i].parent = NULL;
423     r_queue[i].clipset = NULL;
424     r_queue[i].slights = NULL;
425 greg 2.21 r_queue[i].rlvl = 0;
426 greg 2.1 samplendx++;
427     rayclear(&r_queue[i]);
428     rayvalue(&r_queue[i]);
429     }
430     /* write back our results */
431     i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
432     if (i != sizeof(RAY)*n)
433 greg 2.24 error(SYSTEM, "write error in ray_pchild()");
434 greg 2.1 }
435     if (n)
436 greg 2.24 error(SYSTEM, "read error in ray_pchild()");
437 greg 2.1 ambsync();
438     quit(0); /* normal exit */
439     }
440    
441    
442 greg 2.22 void
443 schorsch 2.6 ray_popen( /* open the specified # processes */
444     int nadd
445     )
446 greg 2.1 {
447     /* check if our table has room */
448 greg 2.3 if (ray_pnprocs + nadd > MAX_NPROCS)
449     nadd = MAX_NPROCS - ray_pnprocs;
450 greg 2.1 if (nadd <= 0)
451     return;
452 greg 2.13 ambsync(); /* load any new ambient values */
453 greg 2.20 if (shm_boundary == NULL) { /* first child process? */
454     preload_objs(); /* preload auxiliary data */
455     /* set shared memory boundary */
456     shm_boundary = (char *)malloc(16);
457     strcpy(shm_boundary, "SHM_BOUNDARY");
458     }
459 greg 2.13 fflush(NULL); /* clear pending output */
460 greg 2.1 while (nadd--) { /* fork each new process */
461     int p0[2], p1[2];
462     if (pipe(p0) < 0 || pipe(p1) < 0)
463     error(SYSTEM, "cannot create pipe");
464 greg 2.3 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
465 greg 2.1 int pn; /* close others' descriptors */
466 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
467 greg 2.1 close(r_proc[pn].fd_send);
468     close(r_proc[pn].fd_recv);
469     }
470     close(p0[0]); close(p1[1]);
471 greg 2.24 close(0); /* don't share stdin */
472 greg 2.1 /* following call never returns */
473     ray_pchild(p1[0], p0[1]);
474     }
475 greg 2.3 if (r_proc[ray_pnprocs].pid < 0)
476 greg 2.1 error(SYSTEM, "cannot fork child process");
477     close(p1[0]); close(p0[1]);
478 greg 2.9 /*
479     * Close write stream on exec to avoid multiprocessing deadlock.
480     * No use in read stream without it, so set flag there as well.
481     */
482     fcntl(p1[1], F_SETFD, FD_CLOEXEC);
483     fcntl(p0[0], F_SETFD, FD_CLOEXEC);
484 greg 2.3 r_proc[ray_pnprocs].fd_send = p1[1];
485     r_proc[ray_pnprocs].fd_recv = p0[0];
486     r_proc[ray_pnprocs].npending = 0;
487     ray_pnprocs++;
488     ray_pnidle++;
489 greg 2.1 }
490     }
491    
492    
493 greg 2.22 void
494 schorsch 2.6 ray_pclose( /* close one or more child processes */
495     int nsub
496     )
497 greg 2.1 {
498     static int inclose = 0;
499     RAY res;
500     /* check recursion */
501     if (inclose)
502     return;
503     inclose++;
504     /* check argument */
505 schorsch 2.5 if ((nsub <= 0) | (nsub > ray_pnprocs))
506 greg 2.3 nsub = ray_pnprocs;
507 greg 2.1 /* clear our ray queue */
508     while (ray_presult(&res,0) > 0)
509     ;
510 greg 2.23 r_send_next = 0; /* hard reset in case of error */
511     r_recv_first = r_recv_next = RAYQLEN;
512 greg 2.1 /* clean up children */
513     while (nsub--) {
514     int status;
515 greg 2.3 ray_pnprocs--;
516     close(r_proc[ray_pnprocs].fd_send);
517 greg 2.8 if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
518     status = 127<<8;
519 greg 2.24 close(r_proc[ray_pnprocs].fd_recv);
520 greg 2.1 if (status) {
521     sprintf(errmsg,
522     "rendering process %d exited with code %d",
523 greg 2.3 r_proc[ray_pnprocs].pid, status>>8);
524 greg 2.1 error(WARNING, errmsg);
525     }
526 greg 2.3 ray_pnidle--;
527 greg 2.1 }
528     inclose--;
529     }