ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.22
Committed: Sat Dec 12 05:20:10 2009 UTC (14 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.21: +10 -11 lines
Log Message:
Created FIFO calls for ray multiprocessing

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.22 static const char RCSid[] = "$Id: raypcalls.c,v 2.21 2009/12/12 00:03:42 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * raypcalls.c - interface for parallel rendering using Radiance
6     *
7     * External symbols declared in ray.h
8     */
9    
10 greg 2.2 #include "copyright.h"
11 greg 2.1
12     /*
13     * These calls are designed similarly to the ones in raycalls.c,
14     * but allow for multiple rendering processes on the same host
15     * machine. There is no sense in specifying more child processes
16 greg 2.21 * than you have processor cores, but one child may help by allowing
17 greg 2.1 * asynchronous ray computation in an interactive program, and
18     * will protect the caller from fatal rendering errors.
19     *
20 greg 2.21 * You should first read and understand the header in raycalls.c,
21 greg 2.1 * as some things are explained there that are not repated here.
22     *
23     * The first step is opening one or more rendering processes
24     * with a call to ray_pinit(oct, nproc). Before calling fork(),
25     * ray_pinit() loads the octree and data structures into the
26 greg 2.13 * caller's memory, and ray_popen() synchronizes the ambient
27     * file, if any. Shared memory permits all sorts of queries
28 greg 2.21 * that wouldn't be possible otherwise without causing any real
29 greg 2.1 * memory overhead, since all the static data are shared
30 greg 2.21 * between processes. Rays are traced using a simple
31 greg 2.1 * queuing mechanism, explained below.
32     *
33 greg 2.14 * The ray queue buffers RAYQLEN rays before sending to
34 greg 2.21 * children, each of which may internally buffer RAYQLEN rays
35     * during evaluation. Rays are not returned in the order
36     * they are sent when multiple processes are open.
37 greg 2.14 *
38 greg 2.13 * Rays are queued and returned by a single
39 greg 2.1 * ray_pqueue() call. A ray_pqueue() return
40     * value of 0 indicates that no rays are ready
41     * and the queue is not yet full. A return value of 1
42     * indicates that a ray was returned, though it is probably
43     * not the one you just requested. Rays may be identified by
44     * the rno member of the RAY struct, which is incremented
45     * by the rayorigin() call, or may be set explicitly by
46     * the caller. Below is an example call sequence:
47     *
48     * myRay.rorg = ( ray origin point )
49     * myRay.rdir = ( normalized ray direction )
50     * myRay.rmax = ( maximum length, or zero for no limit )
51 greg 2.11 * rayorigin(&myRay, PRIMARY, NULL, NULL);
52 greg 2.1 * myRay.rno = ( my personal ray identifier )
53     * if (ray_pqueue(&myRay) == 1)
54     * { do something with results }
55     *
56     * Note the differences between this and the simpler ray_trace()
57     * call. In particular, the call may or may not return a value
58     * in the passed ray structure. Also, you need to call rayorigin()
59 greg 2.7 * yourself, which is normally called for you by ray_trace(). The
60     * benefit is that ray_pqueue() will trace rays faster in
61 greg 2.1 * proportion to the number of CPUs you have available on your
62     * system. If the ray queue is full before the call, ray_pqueue()
63     * will block until a result is ready so it can queue this one.
64 greg 2.3 * The global int ray_pnidle indicates the number of currently idle
65 greg 2.1 * children. If you want to check for completed rays without blocking,
66     * or get the results from rays that have been queued without
67     * queuing any new ones, the ray_presult() call is for you:
68     *
69     * if (ray_presult(&myRay, 1) == 1)
70     * { do something with results }
71     *
72     * If the second argument is 1, the call won't block when
73     * results aren't ready, but will immediately return 0.
74     * If the second argument is 0, the call will block
75     * until a value is available, returning 0 only if the
76     * queue is completely empty. A negative return value
77     * indicates that a rendering process died. If this
78 greg 2.21 * happens, ray_pclose(0) is automatically called to close
79 greg 2.3 * all child processes, and ray_pnprocs is set to zero.
80 greg 2.1 *
81     * If you just want to fill the ray queue without checking for
82 greg 2.3 * results, check ray_pnidle and call ray_psend():
83 greg 2.1 *
84 greg 2.3 * while (ray_pnidle) {
85 greg 2.1 * ( set up ray )
86     * ray_psend(&myRay);
87     * }
88     *
89 greg 2.7 * Note that it is a fatal error to call ra_psend() when
90     * ray_pnidle is zero. The ray_presult() and/or ray_pqueue()
91     * functions may be called subsequently to read back the results.
92 greg 2.1 *
93     * When you are done, you may call ray_pdone(1) to close
94     * all child processes and clean up memory used by Radiance.
95     * Any queued ray calculations will be awaited and discarded.
96     * As with ray_done(), ray_pdone(0) hangs onto data files
97     * and fonts that are likely to be used in subsequent renderings.
98 greg 2.21 * Whether you need to clean up memory or not, you should
99     * at least call ray_pclose(0) to await the child processes.
100 greg 2.1 *
101     * Warning: You cannot affect any of the rendering processes
102     * by changing global parameter values onece ray_pinit() has
103     * been called. Changing global parameters will have no effect
104     * until the next call to ray_pinit(), which restarts everything.
105     * If you just want to reap children so that you can alter the
106     * rendering parameters without reloading the scene, use the
107     * ray_pclose(0) and ray_popen(nproc) calls to close
108 greg 2.7 * then restart the child processes after the changes are made.
109 greg 2.1 *
110     * Note: These routines are written to coordinate with the
111     * definitions in raycalls.c, and in fact depend on them.
112     * If you want to trace a ray and get a result synchronously,
113 greg 2.13 * use the ray_trace() call to compute it in the parent process.
114 greg 2.7 * This will not interfere with any subprocess calculations,
115     * but beware that a fatal error may end with a call to quit().
116 greg 2.1 *
117     * Note: One of the advantages of using separate processes
118     * is that it gives the calling program some immunity from
119     * fatal rendering errors. As discussed in raycalls.c,
120     * Radiance tends to throw up its hands and exit at the
121     * first sign of trouble, calling quit() to return control
122 greg 2.7 * to the top level. Although you can avoid exit() with
123 greg 2.1 * your own longjmp() in quit(), the cleanup afterwards
124     * is always suspect. Through the use of subprocesses,
125     * we avoid this pitfall by closing the processes and
126     * returning a negative value from ray_pqueue() or
127     * ray_presult(). If you get a negative value from either
128     * of these calls, you can assume that the processes have
129 greg 2.21 * been cleaned up with a call to ray_pclose(), though you
130 greg 2.1 * will have to call ray_pdone() yourself if you want to
131 greg 2.7 * free memory. Obviously, you cannot continue rendering
132     * without risking further errors, but otherwise your
133     * process should not be compromised.
134 greg 2.1 */
135    
136 schorsch 2.6 #include "rtprocess.h"
137 greg 2.1 #include "ray.h"
138 schorsch 2.6 #include "ambient.h"
139 greg 2.18 #include <sys/types.h>
140     #include <sys/wait.h>
141 greg 2.1 #include "selcall.h"
142    
143     #ifndef RAYQLEN
144 greg 2.13 #define RAYQLEN 12 /* # rays to send at once */
145 greg 2.1 #endif
146    
147     #ifndef MAX_RPROCS
148     #if (FD_SETSIZE/2-4 < 64)
149     #define MAX_NPROCS (FD_SETSIZE/2-4)
150     #else
151     #define MAX_NPROCS 64 /* max. # rendering processes */
152     #endif
153     #endif
154    
155     extern char *shm_boundary; /* boundary of shared memory */
156    
157 greg 2.3 int ray_pnprocs = 0; /* number of child processes */
158     int ray_pnidle = 0; /* number of idle children */
159 greg 2.1
160     static struct child_proc {
161     int pid; /* child process id */
162     int fd_send; /* write to child here */
163     int fd_recv; /* read from child here */
164     int npending; /* # rays in process */
165 greg 2.21 RNUMBER rno[RAYQLEN]; /* working on these rays */
166 greg 2.1 } r_proc[MAX_NPROCS]; /* our child processes */
167    
168     static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
169     static int r_send_next; /* next send ray placement */
170     static int r_recv_first; /* position of first unreported ray */
171 greg 2.22 static int r_recv_next; /* next received ray placement */
172 greg 2.1
173     #define sendq_full() (r_send_next >= RAYQLEN)
174    
175 schorsch 2.6 static int ray_pflush(void);
176 greg 2.13 static void ray_pchild(int fd_in, int fd_out);
177 greg 2.1
178 schorsch 2.6
179 greg 2.22 void
180 schorsch 2.6 ray_pinit( /* initialize ray-tracing processes */
181     char *otnm,
182     int nproc
183     )
184 greg 2.1 {
185     if (nobjects > 0) /* close old calculation */
186     ray_pdone(0);
187    
188     ray_init(otnm); /* load the shared scene */
189    
190     r_send_next = 0; /* set up queue */
191     r_recv_first = r_recv_next = RAYQLEN;
192    
193     ray_popen(nproc); /* fork children */
194     }
195    
196    
197     static int
198 schorsch 2.6 ray_pflush(void) /* send queued rays to idle children */
199 greg 2.1 {
200     int nc, n, nw, i, sfirst;
201    
202 schorsch 2.5 if ((ray_pnidle <= 0) | (r_send_next <= 0))
203 greg 2.1 return(0); /* nothing we can send */
204    
205     sfirst = 0; /* divvy up labor */
206 greg 2.3 nc = ray_pnidle;
207     for (i = ray_pnprocs; nc && i--; ) {
208 greg 2.1 if (r_proc[i].npending > 0)
209     continue; /* child looks busy */
210     n = (r_send_next - sfirst)/nc--;
211     if (!n)
212     continue;
213     /* smuggle set size in crtype */
214     r_queue[sfirst].crtype = n;
215     nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
216     sizeof(RAY)*n);
217     if (nw != sizeof(RAY)*n)
218     return(-1); /* write error */
219     r_proc[i].npending = n;
220     while (n--) /* record ray IDs */
221     r_proc[i].rno[n] = r_queue[sfirst+n].rno;
222     sfirst += r_proc[i].npending;
223 greg 2.3 ray_pnidle--; /* now she's busy */
224 greg 2.1 }
225     if (sfirst != r_send_next)
226     error(CONSISTENCY, "code screwup in ray_pflush");
227     r_send_next = 0;
228     return(sfirst); /* return total # sent */
229     }
230    
231    
232 greg 2.22 void
233 schorsch 2.6 ray_psend( /* add a ray to our send queue */
234     RAY *r
235     )
236 greg 2.1 {
237     if (r == NULL)
238     return;
239     /* flush output if necessary */
240     if (sendq_full() && ray_pflush() <= 0)
241     error(INTERNAL, "ray_pflush failed in ray_psend");
242    
243 greg 2.14 r_queue[r_send_next++] = *r;
244 greg 2.1 }
245    
246    
247 greg 2.22 int
248 schorsch 2.6 ray_pqueue( /* queue a ray for computation */
249     RAY *r
250     )
251 greg 2.1 {
252     if (r == NULL)
253     return(0);
254     /* check for full send queue */
255     if (sendq_full()) {
256 greg 2.19 RAY mySend = *r;
257 greg 2.1 /* wait for a result */
258 greg 2.19 if (ray_presult(r, 0) <= 0)
259     return(-1);
260 greg 2.1 /* put new ray in queue */
261 greg 2.14 r_queue[r_send_next++] = mySend;
262 greg 2.19 /* XXX r_send_next may now be > RAYQLEN */
263     return(1);
264 greg 2.1 }
265 greg 2.13 /* else add ray to send queue */
266 greg 2.14 r_queue[r_send_next++] = *r;
267 greg 2.1 /* check for returned ray... */
268     if (r_recv_first >= r_recv_next)
269     return(0);
270     /* ...one is sitting in queue */
271 greg 2.14 *r = r_queue[r_recv_first++];
272 greg 2.1 return(1);
273     }
274    
275    
276 greg 2.22 int
277 schorsch 2.6 ray_presult( /* check for a completed ray */
278     RAY *r,
279     int poll
280     )
281 greg 2.1 {
282     static struct timeval tpoll; /* zero timeval struct */
283     static fd_set readset, errset;
284     int n, ok;
285     register int pn;
286    
287     if (r == NULL)
288     return(0);
289     /* check queued results first */
290     if (r_recv_first < r_recv_next) {
291 greg 2.14 *r = r_queue[r_recv_first++];
292 greg 2.1 return(1);
293     }
294 greg 2.3 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
295 greg 2.1
296     if (ray_pflush() < 0) /* send new rays to process */
297     return(-1);
298     /* reset receive queue */
299     r_recv_first = r_recv_next = RAYQLEN;
300    
301     if (!poll) /* count newly sent unless polling */
302 greg 2.3 n = ray_pnprocs - ray_pnidle;
303 greg 2.1 if (n <= 0) /* return if nothing to await */
304     return(0);
305 greg 2.16 if (!poll && ray_pnprocs == 1) /* one process -> skip select() */
306     FD_SET(r_proc[0].fd_recv, &readset);
307    
308 greg 2.1 getready: /* any children waiting for us? */
309 greg 2.3 for (pn = ray_pnprocs; pn--; )
310 greg 2.1 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
311     FD_ISSET(r_proc[pn].fd_recv, &errset))
312     break;
313 greg 2.22 /* call select() if we must */
314 greg 2.1 if (pn < 0) {
315     FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
316 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
317 greg 2.1 if (r_proc[pn].npending > 0)
318     FD_SET(r_proc[pn].fd_recv, &readset);
319     FD_SET(r_proc[pn].fd_recv, &errset);
320     if (r_proc[pn].fd_recv >= n)
321     n = r_proc[pn].fd_recv + 1;
322     }
323     /* find out who is ready */
324     while ((n = select(n, &readset, (fd_set *)NULL, &errset,
325     poll ? &tpoll : (struct timeval *)NULL)) < 0)
326     if (errno != EINTR) {
327     error(WARNING,
328     "select call failed in ray_presult");
329     ray_pclose(0);
330     return(-1);
331     }
332     if (n > 0) /* go back and get it */
333     goto getready;
334     return(0); /* else poll came up empty */
335     }
336     if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
337     error(CONSISTENCY, "buffer shortage in ray_presult()");
338    
339     /* read rendered ray data */
340     n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
341     sizeof(RAY)*r_proc[pn].npending);
342     if (n > 0) {
343     r_recv_next += n/sizeof(RAY);
344     ok = (n == sizeof(RAY)*r_proc[pn].npending);
345     } else
346     ok = 0;
347     /* reset child's status */
348     FD_CLR(r_proc[pn].fd_recv, &readset);
349     if (n <= 0)
350     FD_CLR(r_proc[pn].fd_recv, &errset);
351     r_proc[pn].npending = 0;
352 greg 2.3 ray_pnidle++;
353 greg 2.1 /* check for rendering errors */
354     if (!ok) {
355     ray_pclose(0); /* process died -- clean up */
356     return(-1);
357     }
358     /* preen returned rays */
359     for (n = r_recv_next - r_recv_first; n--; ) {
360     register RAY *rp = &r_queue[r_recv_first + n];
361     rp->rno = r_proc[pn].rno[n];
362     rp->parent = NULL;
363     rp->newcset = rp->clipset = NULL;
364     rp->rox = NULL;
365     rp->slights = NULL;
366     }
367     /* return first ray received */
368 greg 2.13 *r = r_queue[r_recv_first++];
369 greg 2.1 return(1);
370     }
371    
372    
373 greg 2.22 void
374 schorsch 2.6 ray_pdone( /* reap children and free data */
375     int freall
376     )
377 greg 2.1 {
378     ray_pclose(0); /* close child processes */
379    
380     if (shm_boundary != NULL) { /* clear shared memory boundary */
381     free((void *)shm_boundary);
382     shm_boundary = NULL;
383     }
384     ray_done(freall); /* free rendering data */
385     }
386    
387    
388     static void
389 schorsch 2.6 ray_pchild( /* process rays (never returns) */
390     int fd_in,
391     int fd_out
392     )
393 greg 2.1 {
394     int n;
395     register int i;
396 greg 2.15 /* flag child process for quit() */
397     ray_pnprocs = -1;
398 greg 2.1 /* read each ray request set */
399     while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
400     int n2;
401 greg 2.12 if (n < sizeof(RAY))
402 greg 2.1 break;
403     /* get smuggled set length */
404 greg 2.12 n2 = sizeof(RAY)*r_queue[0].crtype - n;
405 greg 2.1 if (n2 < 0)
406     error(INTERNAL, "buffer over-read in ray_pchild");
407     if (n2 > 0) { /* read the rest of the set */
408 greg 2.12 i = readbuf(fd_in, (char *)r_queue + n, n2);
409     if (i != n2)
410 greg 2.1 break;
411     n += n2;
412     }
413 greg 2.12 n /= sizeof(RAY);
414 greg 2.1 /* evaluate rays */
415     for (i = 0; i < n; i++) {
416     r_queue[i].crtype = r_queue[i].rtype;
417     r_queue[i].parent = NULL;
418     r_queue[i].clipset = NULL;
419     r_queue[i].slights = NULL;
420 greg 2.21 r_queue[i].rlvl = 0;
421 greg 2.1 samplendx++;
422     rayclear(&r_queue[i]);
423     rayvalue(&r_queue[i]);
424     }
425     /* write back our results */
426     i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
427     if (i != sizeof(RAY)*n)
428     error(SYSTEM, "write error in ray_pchild");
429     }
430     if (n)
431     error(SYSTEM, "read error in ray_pchild");
432     ambsync();
433     quit(0); /* normal exit */
434     }
435    
436    
437 greg 2.22 void
438 schorsch 2.6 ray_popen( /* open the specified # processes */
439     int nadd
440     )
441 greg 2.1 {
442     /* check if our table has room */
443 greg 2.3 if (ray_pnprocs + nadd > MAX_NPROCS)
444     nadd = MAX_NPROCS - ray_pnprocs;
445 greg 2.1 if (nadd <= 0)
446     return;
447 greg 2.13 ambsync(); /* load any new ambient values */
448 greg 2.20 if (shm_boundary == NULL) { /* first child process? */
449     preload_objs(); /* preload auxiliary data */
450     /* set shared memory boundary */
451     shm_boundary = (char *)malloc(16);
452     strcpy(shm_boundary, "SHM_BOUNDARY");
453     }
454 greg 2.13 fflush(NULL); /* clear pending output */
455 greg 2.1 while (nadd--) { /* fork each new process */
456     int p0[2], p1[2];
457     if (pipe(p0) < 0 || pipe(p1) < 0)
458     error(SYSTEM, "cannot create pipe");
459 greg 2.3 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
460 greg 2.1 int pn; /* close others' descriptors */
461 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
462 greg 2.1 close(r_proc[pn].fd_send);
463     close(r_proc[pn].fd_recv);
464     }
465     close(p0[0]); close(p1[1]);
466     /* following call never returns */
467     ray_pchild(p1[0], p0[1]);
468     }
469 greg 2.3 if (r_proc[ray_pnprocs].pid < 0)
470 greg 2.1 error(SYSTEM, "cannot fork child process");
471     close(p1[0]); close(p0[1]);
472 greg 2.9 /*
473     * Close write stream on exec to avoid multiprocessing deadlock.
474     * No use in read stream without it, so set flag there as well.
475     */
476     fcntl(p1[1], F_SETFD, FD_CLOEXEC);
477     fcntl(p0[0], F_SETFD, FD_CLOEXEC);
478 greg 2.3 r_proc[ray_pnprocs].fd_send = p1[1];
479     r_proc[ray_pnprocs].fd_recv = p0[0];
480     r_proc[ray_pnprocs].npending = 0;
481     ray_pnprocs++;
482     ray_pnidle++;
483 greg 2.1 }
484     }
485    
486    
487 greg 2.22 void
488 schorsch 2.6 ray_pclose( /* close one or more child processes */
489     int nsub
490     )
491 greg 2.1 {
492     static int inclose = 0;
493     RAY res;
494     /* check recursion */
495     if (inclose)
496     return;
497     inclose++;
498     /* check argument */
499 schorsch 2.5 if ((nsub <= 0) | (nsub > ray_pnprocs))
500 greg 2.3 nsub = ray_pnprocs;
501 greg 2.1 /* clear our ray queue */
502     while (ray_presult(&res,0) > 0)
503     ;
504     /* clean up children */
505     while (nsub--) {
506     int status;
507 greg 2.3 ray_pnprocs--;
508     close(r_proc[ray_pnprocs].fd_recv);
509     close(r_proc[ray_pnprocs].fd_send);
510 greg 2.8 if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
511     status = 127<<8;
512 greg 2.1 if (status) {
513     sprintf(errmsg,
514     "rendering process %d exited with code %d",
515 greg 2.3 r_proc[ray_pnprocs].pid, status>>8);
516 greg 2.1 error(WARNING, errmsg);
517     }
518 greg 2.3 ray_pnidle--;
519 greg 2.1 }
520     inclose--;
521     }
522    
523    
524     void
525     quit(ec) /* make sure exit is called */
526     int ec;
527     {
528 greg 2.15 if (ray_pnprocs > 0) /* close children if any */
529     ray_pclose(0);
530 greg 2.1 exit(ec);
531     }