ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.20
Committed: Tue Dec 2 23:28:34 2008 UTC (15 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.19: +7 -7 lines
Log Message:
Delayed loading of object data until it is needed

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.20 static const char RCSid[] = "$Id: raypcalls.c,v 2.19 2008/02/20 05:21:29 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * raypcalls.c - interface for parallel rendering using Radiance
6     *
7     * External symbols declared in ray.h
8     */
9    
10 greg 2.2 #include "copyright.h"
11 greg 2.1
12     /*
13     * These calls are designed similarly to the ones in raycalls.c,
14     * but allow for multiple rendering processes on the same host
15     * machine. There is no sense in specifying more child processes
16     * than you have processors, but one child may help by allowing
17     * asynchronous ray computation in an interactive program, and
18     * will protect the caller from fatal rendering errors.
19     *
20     * You should first read and undrstand the header in raycalls.c,
21     * as some things are explained there that are not repated here.
22     *
23     * The first step is opening one or more rendering processes
24     * with a call to ray_pinit(oct, nproc). Before calling fork(),
25     * ray_pinit() loads the octree and data structures into the
26 greg 2.13 * caller's memory, and ray_popen() synchronizes the ambient
27     * file, if any. Shared memory permits all sorts of queries
28     * that wouldn't be possible otherwise, without causing any real
29 greg 2.1 * memory overhead, since all the static data are shared
30     * between processes. Rays are then traced using a simple
31     * queuing mechanism, explained below.
32     *
33 greg 2.14 * The ray queue buffers RAYQLEN rays before sending to
34     * children, each of which may internally buffer RAYQLEN rays.
35     *
36 greg 2.13 * Rays are queued and returned by a single
37 greg 2.1 * ray_pqueue() call. A ray_pqueue() return
38     * value of 0 indicates that no rays are ready
39     * and the queue is not yet full. A return value of 1
40     * indicates that a ray was returned, though it is probably
41     * not the one you just requested. Rays may be identified by
42     * the rno member of the RAY struct, which is incremented
43     * by the rayorigin() call, or may be set explicitly by
44     * the caller. Below is an example call sequence:
45     *
46     * myRay.rorg = ( ray origin point )
47     * myRay.rdir = ( normalized ray direction )
48     * myRay.rmax = ( maximum length, or zero for no limit )
49 greg 2.11 * rayorigin(&myRay, PRIMARY, NULL, NULL);
50 greg 2.1 * myRay.rno = ( my personal ray identifier )
51     * if (ray_pqueue(&myRay) == 1)
52     * { do something with results }
53     *
54     * Note the differences between this and the simpler ray_trace()
55     * call. In particular, the call may or may not return a value
56     * in the passed ray structure. Also, you need to call rayorigin()
57 greg 2.7 * yourself, which is normally called for you by ray_trace(). The
58     * benefit is that ray_pqueue() will trace rays faster in
59 greg 2.1 * proportion to the number of CPUs you have available on your
60     * system. If the ray queue is full before the call, ray_pqueue()
61     * will block until a result is ready so it can queue this one.
62 greg 2.3 * The global int ray_pnidle indicates the number of currently idle
63 greg 2.1 * children. If you want to check for completed rays without blocking,
64     * or get the results from rays that have been queued without
65     * queuing any new ones, the ray_presult() call is for you:
66     *
67     * if (ray_presult(&myRay, 1) == 1)
68     * { do something with results }
69     *
70     * If the second argument is 1, the call won't block when
71     * results aren't ready, but will immediately return 0.
72     * If the second argument is 0, the call will block
73     * until a value is available, returning 0 only if the
74     * queue is completely empty. A negative return value
75     * indicates that a rendering process died. If this
76     * happens, ray_close(0) is automatically called to close
77 greg 2.3 * all child processes, and ray_pnprocs is set to zero.
78 greg 2.1 *
79     * If you just want to fill the ray queue without checking for
80 greg 2.3 * results, check ray_pnidle and call ray_psend():
81 greg 2.1 *
82 greg 2.3 * while (ray_pnidle) {
83 greg 2.1 * ( set up ray )
84     * ray_psend(&myRay);
85     * }
86     *
87 greg 2.7 * Note that it is a fatal error to call ra_psend() when
88     * ray_pnidle is zero. The ray_presult() and/or ray_pqueue()
89     * functions may be called subsequently to read back the results.
90 greg 2.1 *
91     * When you are done, you may call ray_pdone(1) to close
92     * all child processes and clean up memory used by Radiance.
93     * Any queued ray calculations will be awaited and discarded.
94     * As with ray_done(), ray_pdone(0) hangs onto data files
95     * and fonts that are likely to be used in subsequent renderings.
96     * Whether you want to bother cleaning up memory or not, you
97     * should at least call ray_pclose(0) to clean the child processes.
98     *
99     * Warning: You cannot affect any of the rendering processes
100     * by changing global parameter values onece ray_pinit() has
101     * been called. Changing global parameters will have no effect
102     * until the next call to ray_pinit(), which restarts everything.
103     * If you just want to reap children so that you can alter the
104     * rendering parameters without reloading the scene, use the
105     * ray_pclose(0) and ray_popen(nproc) calls to close
106 greg 2.7 * then restart the child processes after the changes are made.
107 greg 2.1 *
108     * Note: These routines are written to coordinate with the
109     * definitions in raycalls.c, and in fact depend on them.
110     * If you want to trace a ray and get a result synchronously,
111 greg 2.13 * use the ray_trace() call to compute it in the parent process.
112 greg 2.7 * This will not interfere with any subprocess calculations,
113     * but beware that a fatal error may end with a call to quit().
114 greg 2.1 *
115     * Note: One of the advantages of using separate processes
116     * is that it gives the calling program some immunity from
117     * fatal rendering errors. As discussed in raycalls.c,
118     * Radiance tends to throw up its hands and exit at the
119     * first sign of trouble, calling quit() to return control
120 greg 2.7 * to the top level. Although you can avoid exit() with
121 greg 2.1 * your own longjmp() in quit(), the cleanup afterwards
122     * is always suspect. Through the use of subprocesses,
123     * we avoid this pitfall by closing the processes and
124     * returning a negative value from ray_pqueue() or
125     * ray_presult(). If you get a negative value from either
126     * of these calls, you can assume that the processes have
127     * been cleaned up with a call to ray_close(), though you
128     * will have to call ray_pdone() yourself if you want to
129 greg 2.7 * free memory. Obviously, you cannot continue rendering
130     * without risking further errors, but otherwise your
131     * process should not be compromised.
132 greg 2.1 */
133    
134 schorsch 2.6 #include "rtprocess.h"
135 greg 2.1 #include "ray.h"
136 schorsch 2.6 #include "ambient.h"
137 greg 2.18 #include <sys/types.h>
138     #include <sys/wait.h>
139 greg 2.1 #include "selcall.h"
140    
141     #ifndef RAYQLEN
142 greg 2.13 #define RAYQLEN 12 /* # rays to send at once */
143 greg 2.1 #endif
144    
145     #ifndef MAX_RPROCS
146     #if (FD_SETSIZE/2-4 < 64)
147     #define MAX_NPROCS (FD_SETSIZE/2-4)
148     #else
149     #define MAX_NPROCS 64 /* max. # rendering processes */
150     #endif
151     #endif
152    
153     extern char *shm_boundary; /* boundary of shared memory */
154    
155 greg 2.3 int ray_pnprocs = 0; /* number of child processes */
156     int ray_pnidle = 0; /* number of idle children */
157 greg 2.1
158     static struct child_proc {
159     int pid; /* child process id */
160     int fd_send; /* write to child here */
161     int fd_recv; /* read from child here */
162     int npending; /* # rays in process */
163     unsigned long rno[RAYQLEN]; /* working on these rays */
164     } r_proc[MAX_NPROCS]; /* our child processes */
165    
166     static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
167     static int r_send_next; /* next send ray placement */
168     static int r_recv_first; /* position of first unreported ray */
169     static int r_recv_next; /* next receive ray placement */
170    
171     #define sendq_full() (r_send_next >= RAYQLEN)
172    
173 schorsch 2.6 static int ray_pflush(void);
174 greg 2.13 static void ray_pchild(int fd_in, int fd_out);
175 greg 2.1
176 schorsch 2.6
177     extern void
178     ray_pinit( /* initialize ray-tracing processes */
179     char *otnm,
180     int nproc
181     )
182 greg 2.1 {
183     if (nobjects > 0) /* close old calculation */
184     ray_pdone(0);
185    
186     ray_init(otnm); /* load the shared scene */
187    
188     r_send_next = 0; /* set up queue */
189     r_recv_first = r_recv_next = RAYQLEN;
190    
191     ray_popen(nproc); /* fork children */
192     }
193    
194    
195     static int
196 schorsch 2.6 ray_pflush(void) /* send queued rays to idle children */
197 greg 2.1 {
198     int nc, n, nw, i, sfirst;
199    
200 schorsch 2.5 if ((ray_pnidle <= 0) | (r_send_next <= 0))
201 greg 2.1 return(0); /* nothing we can send */
202    
203     sfirst = 0; /* divvy up labor */
204 greg 2.3 nc = ray_pnidle;
205     for (i = ray_pnprocs; nc && i--; ) {
206 greg 2.1 if (r_proc[i].npending > 0)
207     continue; /* child looks busy */
208     n = (r_send_next - sfirst)/nc--;
209     if (!n)
210     continue;
211     /* smuggle set size in crtype */
212     r_queue[sfirst].crtype = n;
213     nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
214     sizeof(RAY)*n);
215     if (nw != sizeof(RAY)*n)
216     return(-1); /* write error */
217     r_proc[i].npending = n;
218     while (n--) /* record ray IDs */
219     r_proc[i].rno[n] = r_queue[sfirst+n].rno;
220     sfirst += r_proc[i].npending;
221 greg 2.3 ray_pnidle--; /* now she's busy */
222 greg 2.1 }
223     if (sfirst != r_send_next)
224     error(CONSISTENCY, "code screwup in ray_pflush");
225     r_send_next = 0;
226     return(sfirst); /* return total # sent */
227     }
228    
229    
230 schorsch 2.6 extern void
231     ray_psend( /* add a ray to our send queue */
232     RAY *r
233     )
234 greg 2.1 {
235     if (r == NULL)
236     return;
237     /* flush output if necessary */
238     if (sendq_full() && ray_pflush() <= 0)
239     error(INTERNAL, "ray_pflush failed in ray_psend");
240    
241 greg 2.14 r_queue[r_send_next++] = *r;
242 greg 2.1 }
243    
244    
245 schorsch 2.6 extern int
246     ray_pqueue( /* queue a ray for computation */
247     RAY *r
248     )
249 greg 2.1 {
250     if (r == NULL)
251     return(0);
252     /* check for full send queue */
253     if (sendq_full()) {
254 greg 2.19 RAY mySend = *r;
255 greg 2.1 /* wait for a result */
256 greg 2.19 if (ray_presult(r, 0) <= 0)
257     return(-1);
258 greg 2.1 /* put new ray in queue */
259 greg 2.14 r_queue[r_send_next++] = mySend;
260 greg 2.19 /* XXX r_send_next may now be > RAYQLEN */
261     return(1);
262 greg 2.1 }
263 greg 2.13 /* else add ray to send queue */
264 greg 2.14 r_queue[r_send_next++] = *r;
265 greg 2.1 /* check for returned ray... */
266     if (r_recv_first >= r_recv_next)
267     return(0);
268     /* ...one is sitting in queue */
269 greg 2.14 *r = r_queue[r_recv_first++];
270 greg 2.1 return(1);
271     }
272    
273    
274 schorsch 2.6 extern int
275     ray_presult( /* check for a completed ray */
276     RAY *r,
277     int poll
278     )
279 greg 2.1 {
280     static struct timeval tpoll; /* zero timeval struct */
281     static fd_set readset, errset;
282     int n, ok;
283     register int pn;
284    
285     if (r == NULL)
286     return(0);
287     /* check queued results first */
288     if (r_recv_first < r_recv_next) {
289 greg 2.14 *r = r_queue[r_recv_first++];
290 greg 2.1 return(1);
291     }
292 greg 2.3 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
293 greg 2.1
294     if (ray_pflush() < 0) /* send new rays to process */
295     return(-1);
296     /* reset receive queue */
297     r_recv_first = r_recv_next = RAYQLEN;
298    
299     if (!poll) /* count newly sent unless polling */
300 greg 2.3 n = ray_pnprocs - ray_pnidle;
301 greg 2.1 if (n <= 0) /* return if nothing to await */
302     return(0);
303 greg 2.16 if (!poll && ray_pnprocs == 1) /* one process -> skip select() */
304     FD_SET(r_proc[0].fd_recv, &readset);
305    
306 greg 2.1 getready: /* any children waiting for us? */
307 greg 2.3 for (pn = ray_pnprocs; pn--; )
308 greg 2.1 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
309     FD_ISSET(r_proc[pn].fd_recv, &errset))
310     break;
311     /* call select if we must */
312     if (pn < 0) {
313     FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
314 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
315 greg 2.1 if (r_proc[pn].npending > 0)
316     FD_SET(r_proc[pn].fd_recv, &readset);
317     FD_SET(r_proc[pn].fd_recv, &errset);
318     if (r_proc[pn].fd_recv >= n)
319     n = r_proc[pn].fd_recv + 1;
320     }
321     /* find out who is ready */
322     while ((n = select(n, &readset, (fd_set *)NULL, &errset,
323     poll ? &tpoll : (struct timeval *)NULL)) < 0)
324     if (errno != EINTR) {
325     error(WARNING,
326     "select call failed in ray_presult");
327     ray_pclose(0);
328     return(-1);
329     }
330     if (n > 0) /* go back and get it */
331     goto getready;
332     return(0); /* else poll came up empty */
333     }
334     if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
335     error(CONSISTENCY, "buffer shortage in ray_presult()");
336    
337     /* read rendered ray data */
338     n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
339     sizeof(RAY)*r_proc[pn].npending);
340     if (n > 0) {
341     r_recv_next += n/sizeof(RAY);
342     ok = (n == sizeof(RAY)*r_proc[pn].npending);
343     } else
344     ok = 0;
345     /* reset child's status */
346     FD_CLR(r_proc[pn].fd_recv, &readset);
347     if (n <= 0)
348     FD_CLR(r_proc[pn].fd_recv, &errset);
349     r_proc[pn].npending = 0;
350 greg 2.3 ray_pnidle++;
351 greg 2.1 /* check for rendering errors */
352     if (!ok) {
353     ray_pclose(0); /* process died -- clean up */
354     return(-1);
355     }
356     /* preen returned rays */
357     for (n = r_recv_next - r_recv_first; n--; ) {
358     register RAY *rp = &r_queue[r_recv_first + n];
359     rp->rno = r_proc[pn].rno[n];
360     rp->parent = NULL;
361     rp->newcset = rp->clipset = NULL;
362     rp->rox = NULL;
363     rp->slights = NULL;
364     }
365     /* return first ray received */
366 greg 2.13 *r = r_queue[r_recv_first++];
367 greg 2.1 return(1);
368     }
369    
370    
371 schorsch 2.6 extern void
372     ray_pdone( /* reap children and free data */
373     int freall
374     )
375 greg 2.1 {
376     ray_pclose(0); /* close child processes */
377    
378     if (shm_boundary != NULL) { /* clear shared memory boundary */
379     free((void *)shm_boundary);
380     shm_boundary = NULL;
381     }
382     ray_done(freall); /* free rendering data */
383     }
384    
385    
386     static void
387 schorsch 2.6 ray_pchild( /* process rays (never returns) */
388     int fd_in,
389     int fd_out
390     )
391 greg 2.1 {
392     int n;
393     register int i;
394 greg 2.15 /* flag child process for quit() */
395     ray_pnprocs = -1;
396 greg 2.1 /* read each ray request set */
397     while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
398     int n2;
399 greg 2.12 if (n < sizeof(RAY))
400 greg 2.1 break;
401     /* get smuggled set length */
402 greg 2.12 n2 = sizeof(RAY)*r_queue[0].crtype - n;
403 greg 2.1 if (n2 < 0)
404     error(INTERNAL, "buffer over-read in ray_pchild");
405     if (n2 > 0) { /* read the rest of the set */
406 greg 2.12 i = readbuf(fd_in, (char *)r_queue + n, n2);
407     if (i != n2)
408 greg 2.1 break;
409     n += n2;
410     }
411 greg 2.12 n /= sizeof(RAY);
412 greg 2.1 /* evaluate rays */
413     for (i = 0; i < n; i++) {
414     r_queue[i].crtype = r_queue[i].rtype;
415     r_queue[i].parent = NULL;
416     r_queue[i].clipset = NULL;
417     r_queue[i].slights = NULL;
418     samplendx++;
419     rayclear(&r_queue[i]);
420     rayvalue(&r_queue[i]);
421     }
422     /* write back our results */
423     i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
424     if (i != sizeof(RAY)*n)
425     error(SYSTEM, "write error in ray_pchild");
426     }
427     if (n)
428     error(SYSTEM, "read error in ray_pchild");
429     ambsync();
430     quit(0); /* normal exit */
431     }
432    
433    
434 schorsch 2.6 extern void
435     ray_popen( /* open the specified # processes */
436     int nadd
437     )
438 greg 2.1 {
439     /* check if our table has room */
440 greg 2.3 if (ray_pnprocs + nadd > MAX_NPROCS)
441     nadd = MAX_NPROCS - ray_pnprocs;
442 greg 2.1 if (nadd <= 0)
443     return;
444 greg 2.13 ambsync(); /* load any new ambient values */
445 greg 2.20 if (shm_boundary == NULL) { /* first child process? */
446     preload_objs(); /* preload auxiliary data */
447     /* set shared memory boundary */
448     shm_boundary = (char *)malloc(16);
449     strcpy(shm_boundary, "SHM_BOUNDARY");
450     }
451 greg 2.13 fflush(NULL); /* clear pending output */
452 greg 2.1 while (nadd--) { /* fork each new process */
453     int p0[2], p1[2];
454     if (pipe(p0) < 0 || pipe(p1) < 0)
455     error(SYSTEM, "cannot create pipe");
456 greg 2.3 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
457 greg 2.1 int pn; /* close others' descriptors */
458 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
459 greg 2.1 close(r_proc[pn].fd_send);
460     close(r_proc[pn].fd_recv);
461     }
462     close(p0[0]); close(p1[1]);
463     /* following call never returns */
464     ray_pchild(p1[0], p0[1]);
465     }
466 greg 2.3 if (r_proc[ray_pnprocs].pid < 0)
467 greg 2.1 error(SYSTEM, "cannot fork child process");
468     close(p1[0]); close(p0[1]);
469 greg 2.9 /*
470     * Close write stream on exec to avoid multiprocessing deadlock.
471     * No use in read stream without it, so set flag there as well.
472     */
473     fcntl(p1[1], F_SETFD, FD_CLOEXEC);
474     fcntl(p0[0], F_SETFD, FD_CLOEXEC);
475 greg 2.3 r_proc[ray_pnprocs].fd_send = p1[1];
476     r_proc[ray_pnprocs].fd_recv = p0[0];
477     r_proc[ray_pnprocs].npending = 0;
478     ray_pnprocs++;
479     ray_pnidle++;
480 greg 2.1 }
481     }
482    
483    
484 schorsch 2.6 extern void
485     ray_pclose( /* close one or more child processes */
486     int nsub
487     )
488 greg 2.1 {
489     static int inclose = 0;
490     RAY res;
491     /* check recursion */
492     if (inclose)
493     return;
494     inclose++;
495     /* check argument */
496 schorsch 2.5 if ((nsub <= 0) | (nsub > ray_pnprocs))
497 greg 2.3 nsub = ray_pnprocs;
498 greg 2.1 /* clear our ray queue */
499     while (ray_presult(&res,0) > 0)
500     ;
501     /* clean up children */
502     while (nsub--) {
503     int status;
504 greg 2.3 ray_pnprocs--;
505     close(r_proc[ray_pnprocs].fd_recv);
506     close(r_proc[ray_pnprocs].fd_send);
507 greg 2.8 if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
508     status = 127<<8;
509 greg 2.1 if (status) {
510     sprintf(errmsg,
511     "rendering process %d exited with code %d",
512 greg 2.3 r_proc[ray_pnprocs].pid, status>>8);
513 greg 2.1 error(WARNING, errmsg);
514     }
515 greg 2.3 ray_pnidle--;
516 greg 2.1 }
517     inclose--;
518     }
519    
520    
521     void
522     quit(ec) /* make sure exit is called */
523     int ec;
524     {
525 greg 2.15 if (ray_pnprocs > 0) /* close children if any */
526     ray_pclose(0);
527 greg 2.1 exit(ec);
528     }