ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.18
Committed: Fri Feb 8 18:27:31 2008 UTC (16 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.17: +3 -5 lines
Log Message:
Created stub routines as placeholder for Windows version of raypcalls

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.18 static const char RCSid[] = "$Id: raypcalls.c,v 2.17 2007/09/18 19:10:02 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * raypcalls.c - interface for parallel rendering using Radiance
6     *
7     * External symbols declared in ray.h
8     */
9    
10 greg 2.2 #include "copyright.h"
11 greg 2.1
12     /*
13     * These calls are designed similarly to the ones in raycalls.c,
14     * but allow for multiple rendering processes on the same host
15     * machine. There is no sense in specifying more child processes
16     * than you have processors, but one child may help by allowing
17     * asynchronous ray computation in an interactive program, and
18     * will protect the caller from fatal rendering errors.
19     *
20     * You should first read and undrstand the header in raycalls.c,
21     * as some things are explained there that are not repated here.
22     *
23     * The first step is opening one or more rendering processes
24     * with a call to ray_pinit(oct, nproc). Before calling fork(),
25     * ray_pinit() loads the octree and data structures into the
26 greg 2.13 * caller's memory, and ray_popen() synchronizes the ambient
27     * file, if any. Shared memory permits all sorts of queries
28     * that wouldn't be possible otherwise, without causing any real
29 greg 2.1 * memory overhead, since all the static data are shared
30     * between processes. Rays are then traced using a simple
31     * queuing mechanism, explained below.
32     *
33 greg 2.14 * The ray queue buffers RAYQLEN rays before sending to
34     * children, each of which may internally buffer RAYQLEN rays.
35     *
36 greg 2.13 * Rays are queued and returned by a single
37 greg 2.1 * ray_pqueue() call. A ray_pqueue() return
38     * value of 0 indicates that no rays are ready
39     * and the queue is not yet full. A return value of 1
40     * indicates that a ray was returned, though it is probably
41     * not the one you just requested. Rays may be identified by
42     * the rno member of the RAY struct, which is incremented
43     * by the rayorigin() call, or may be set explicitly by
44     * the caller. Below is an example call sequence:
45     *
46     * myRay.rorg = ( ray origin point )
47     * myRay.rdir = ( normalized ray direction )
48     * myRay.rmax = ( maximum length, or zero for no limit )
49 greg 2.11 * rayorigin(&myRay, PRIMARY, NULL, NULL);
50 greg 2.1 * myRay.rno = ( my personal ray identifier )
51     * if (ray_pqueue(&myRay) == 1)
52     * { do something with results }
53     *
54     * Note the differences between this and the simpler ray_trace()
55     * call. In particular, the call may or may not return a value
56     * in the passed ray structure. Also, you need to call rayorigin()
57 greg 2.7 * yourself, which is normally called for you by ray_trace(). The
58     * benefit is that ray_pqueue() will trace rays faster in
59 greg 2.1 * proportion to the number of CPUs you have available on your
60     * system. If the ray queue is full before the call, ray_pqueue()
61     * will block until a result is ready so it can queue this one.
62 greg 2.3 * The global int ray_pnidle indicates the number of currently idle
63 greg 2.1 * children. If you want to check for completed rays without blocking,
64     * or get the results from rays that have been queued without
65     * queuing any new ones, the ray_presult() call is for you:
66     *
67     * if (ray_presult(&myRay, 1) == 1)
68     * { do something with results }
69     *
70     * If the second argument is 1, the call won't block when
71     * results aren't ready, but will immediately return 0.
72     * If the second argument is 0, the call will block
73     * until a value is available, returning 0 only if the
74     * queue is completely empty. A negative return value
75     * indicates that a rendering process died. If this
76     * happens, ray_close(0) is automatically called to close
77 greg 2.3 * all child processes, and ray_pnprocs is set to zero.
78 greg 2.1 *
79     * If you just want to fill the ray queue without checking for
80 greg 2.3 * results, check ray_pnidle and call ray_psend():
81 greg 2.1 *
82 greg 2.3 * while (ray_pnidle) {
83 greg 2.1 * ( set up ray )
84     * ray_psend(&myRay);
85     * }
86     *
87 greg 2.7 * Note that it is a fatal error to call ra_psend() when
88     * ray_pnidle is zero. The ray_presult() and/or ray_pqueue()
89     * functions may be called subsequently to read back the results.
90 greg 2.1 *
91     * When you are done, you may call ray_pdone(1) to close
92     * all child processes and clean up memory used by Radiance.
93     * Any queued ray calculations will be awaited and discarded.
94     * As with ray_done(), ray_pdone(0) hangs onto data files
95     * and fonts that are likely to be used in subsequent renderings.
96     * Whether you want to bother cleaning up memory or not, you
97     * should at least call ray_pclose(0) to clean the child processes.
98     *
99     * Warning: You cannot affect any of the rendering processes
100     * by changing global parameter values onece ray_pinit() has
101     * been called. Changing global parameters will have no effect
102     * until the next call to ray_pinit(), which restarts everything.
103     * If you just want to reap children so that you can alter the
104     * rendering parameters without reloading the scene, use the
105     * ray_pclose(0) and ray_popen(nproc) calls to close
106 greg 2.7 * then restart the child processes after the changes are made.
107 greg 2.1 *
108     * Note: These routines are written to coordinate with the
109     * definitions in raycalls.c, and in fact depend on them.
110     * If you want to trace a ray and get a result synchronously,
111 greg 2.13 * use the ray_trace() call to compute it in the parent process.
112 greg 2.7 * This will not interfere with any subprocess calculations,
113     * but beware that a fatal error may end with a call to quit().
114 greg 2.1 *
115     * Note: One of the advantages of using separate processes
116     * is that it gives the calling program some immunity from
117     * fatal rendering errors. As discussed in raycalls.c,
118     * Radiance tends to throw up its hands and exit at the
119     * first sign of trouble, calling quit() to return control
120 greg 2.7 * to the top level. Although you can avoid exit() with
121 greg 2.1 * your own longjmp() in quit(), the cleanup afterwards
122     * is always suspect. Through the use of subprocesses,
123     * we avoid this pitfall by closing the processes and
124     * returning a negative value from ray_pqueue() or
125     * ray_presult(). If you get a negative value from either
126     * of these calls, you can assume that the processes have
127     * been cleaned up with a call to ray_close(), though you
128     * will have to call ray_pdone() yourself if you want to
129 greg 2.7 * free memory. Obviously, you cannot continue rendering
130     * without risking further errors, but otherwise your
131     * process should not be compromised.
132 greg 2.1 */
133    
134 schorsch 2.6 #include "rtprocess.h"
135 greg 2.1 #include "ray.h"
136 schorsch 2.6 #include "ambient.h"
137 greg 2.18 #include <sys/types.h>
138     #include <sys/wait.h>
139 greg 2.1 #include "selcall.h"
140    
141     #ifndef RAYQLEN
142 greg 2.13 #define RAYQLEN 12 /* # rays to send at once */
143 greg 2.1 #endif
144    
145     #ifndef MAX_RPROCS
146     #if (FD_SETSIZE/2-4 < 64)
147     #define MAX_NPROCS (FD_SETSIZE/2-4)
148     #else
149     #define MAX_NPROCS 64 /* max. # rendering processes */
150     #endif
151     #endif
152    
153     extern char *shm_boundary; /* boundary of shared memory */
154    
155 greg 2.3 int ray_pnprocs = 0; /* number of child processes */
156     int ray_pnidle = 0; /* number of idle children */
157 greg 2.1
158     static struct child_proc {
159     int pid; /* child process id */
160     int fd_send; /* write to child here */
161     int fd_recv; /* read from child here */
162     int npending; /* # rays in process */
163     unsigned long rno[RAYQLEN]; /* working on these rays */
164     } r_proc[MAX_NPROCS]; /* our child processes */
165    
166     static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
167     static int r_send_next; /* next send ray placement */
168     static int r_recv_first; /* position of first unreported ray */
169     static int r_recv_next; /* next receive ray placement */
170    
171     #define sendq_full() (r_send_next >= RAYQLEN)
172    
173 schorsch 2.6 static int ray_pflush(void);
174 greg 2.13 static void ray_pchild(int fd_in, int fd_out);
175 greg 2.1
176 schorsch 2.6
177     extern void
178     ray_pinit( /* initialize ray-tracing processes */
179     char *otnm,
180     int nproc
181     )
182 greg 2.1 {
183     if (nobjects > 0) /* close old calculation */
184     ray_pdone(0);
185    
186     ray_init(otnm); /* load the shared scene */
187    
188     preload_objs(); /* preload auxiliary data */
189    
190     /* set shared memory boundary */
191     shm_boundary = (char *)malloc(16);
192     strcpy(shm_boundary, "SHM_BOUNDARY");
193    
194     r_send_next = 0; /* set up queue */
195     r_recv_first = r_recv_next = RAYQLEN;
196    
197     ray_popen(nproc); /* fork children */
198     }
199    
200    
201     static int
202 schorsch 2.6 ray_pflush(void) /* send queued rays to idle children */
203 greg 2.1 {
204     int nc, n, nw, i, sfirst;
205    
206 schorsch 2.5 if ((ray_pnidle <= 0) | (r_send_next <= 0))
207 greg 2.1 return(0); /* nothing we can send */
208    
209     sfirst = 0; /* divvy up labor */
210 greg 2.3 nc = ray_pnidle;
211     for (i = ray_pnprocs; nc && i--; ) {
212 greg 2.1 if (r_proc[i].npending > 0)
213     continue; /* child looks busy */
214     n = (r_send_next - sfirst)/nc--;
215     if (!n)
216     continue;
217     /* smuggle set size in crtype */
218     r_queue[sfirst].crtype = n;
219     nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
220     sizeof(RAY)*n);
221     if (nw != sizeof(RAY)*n)
222     return(-1); /* write error */
223     r_proc[i].npending = n;
224     while (n--) /* record ray IDs */
225     r_proc[i].rno[n] = r_queue[sfirst+n].rno;
226     sfirst += r_proc[i].npending;
227 greg 2.3 ray_pnidle--; /* now she's busy */
228 greg 2.1 }
229     if (sfirst != r_send_next)
230     error(CONSISTENCY, "code screwup in ray_pflush");
231     r_send_next = 0;
232     return(sfirst); /* return total # sent */
233     }
234    
235    
236 schorsch 2.6 extern void
237     ray_psend( /* add a ray to our send queue */
238     RAY *r
239     )
240 greg 2.1 {
241     if (r == NULL)
242     return;
243     /* flush output if necessary */
244     if (sendq_full() && ray_pflush() <= 0)
245     error(INTERNAL, "ray_pflush failed in ray_psend");
246    
247 greg 2.14 r_queue[r_send_next++] = *r;
248 greg 2.1 }
249    
250    
251 schorsch 2.6 extern int
252     ray_pqueue( /* queue a ray for computation */
253     RAY *r
254     )
255 greg 2.1 {
256     if (r == NULL)
257     return(0);
258     /* check for full send queue */
259     if (sendq_full()) {
260     RAY mySend;
261     int rval;
262 schorsch 2.4 mySend = *r;
263 greg 2.1 /* wait for a result */
264     rval = ray_presult(r, 0);
265     /* put new ray in queue */
266 greg 2.14 r_queue[r_send_next++] = mySend;
267 greg 2.1 return(rval); /* done */
268     }
269 greg 2.13 /* else add ray to send queue */
270 greg 2.14 r_queue[r_send_next++] = *r;
271 greg 2.1 /* check for returned ray... */
272     if (r_recv_first >= r_recv_next)
273     return(0);
274     /* ...one is sitting in queue */
275 greg 2.14 *r = r_queue[r_recv_first++];
276 greg 2.1 return(1);
277     }
278    
279    
280 schorsch 2.6 extern int
281     ray_presult( /* check for a completed ray */
282     RAY *r,
283     int poll
284     )
285 greg 2.1 {
286     static struct timeval tpoll; /* zero timeval struct */
287     static fd_set readset, errset;
288     int n, ok;
289     register int pn;
290    
291     if (r == NULL)
292     return(0);
293     /* check queued results first */
294     if (r_recv_first < r_recv_next) {
295 greg 2.14 *r = r_queue[r_recv_first++];
296 greg 2.17 /* make sure send queue has room */
297     if (sendq_full() && ray_pflush() <= 0)
298     return(-1);
299 greg 2.1 return(1);
300     }
301 greg 2.3 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
302 greg 2.1
303     if (ray_pflush() < 0) /* send new rays to process */
304     return(-1);
305     /* reset receive queue */
306     r_recv_first = r_recv_next = RAYQLEN;
307    
308     if (!poll) /* count newly sent unless polling */
309 greg 2.3 n = ray_pnprocs - ray_pnidle;
310 greg 2.1 if (n <= 0) /* return if nothing to await */
311     return(0);
312 greg 2.16 if (!poll && ray_pnprocs == 1) /* one process -> skip select() */
313     FD_SET(r_proc[0].fd_recv, &readset);
314    
315 greg 2.1 getready: /* any children waiting for us? */
316 greg 2.3 for (pn = ray_pnprocs; pn--; )
317 greg 2.1 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
318     FD_ISSET(r_proc[pn].fd_recv, &errset))
319     break;
320     /* call select if we must */
321     if (pn < 0) {
322     FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
323 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
324 greg 2.1 if (r_proc[pn].npending > 0)
325     FD_SET(r_proc[pn].fd_recv, &readset);
326     FD_SET(r_proc[pn].fd_recv, &errset);
327     if (r_proc[pn].fd_recv >= n)
328     n = r_proc[pn].fd_recv + 1;
329     }
330     /* find out who is ready */
331     while ((n = select(n, &readset, (fd_set *)NULL, &errset,
332     poll ? &tpoll : (struct timeval *)NULL)) < 0)
333     if (errno != EINTR) {
334     error(WARNING,
335     "select call failed in ray_presult");
336     ray_pclose(0);
337     return(-1);
338     }
339     if (n > 0) /* go back and get it */
340     goto getready;
341     return(0); /* else poll came up empty */
342     }
343     if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
344     error(CONSISTENCY, "buffer shortage in ray_presult()");
345    
346     /* read rendered ray data */
347     n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
348     sizeof(RAY)*r_proc[pn].npending);
349     if (n > 0) {
350     r_recv_next += n/sizeof(RAY);
351     ok = (n == sizeof(RAY)*r_proc[pn].npending);
352     } else
353     ok = 0;
354     /* reset child's status */
355     FD_CLR(r_proc[pn].fd_recv, &readset);
356     if (n <= 0)
357     FD_CLR(r_proc[pn].fd_recv, &errset);
358     r_proc[pn].npending = 0;
359 greg 2.3 ray_pnidle++;
360 greg 2.1 /* check for rendering errors */
361     if (!ok) {
362     ray_pclose(0); /* process died -- clean up */
363     return(-1);
364     }
365     /* preen returned rays */
366     for (n = r_recv_next - r_recv_first; n--; ) {
367     register RAY *rp = &r_queue[r_recv_first + n];
368     rp->rno = r_proc[pn].rno[n];
369     rp->parent = NULL;
370     rp->newcset = rp->clipset = NULL;
371     rp->rox = NULL;
372     rp->slights = NULL;
373     }
374     /* return first ray received */
375 greg 2.13 *r = r_queue[r_recv_first++];
376 greg 2.1 return(1);
377     }
378    
379    
380 schorsch 2.6 extern void
381     ray_pdone( /* reap children and free data */
382     int freall
383     )
384 greg 2.1 {
385     ray_pclose(0); /* close child processes */
386    
387     if (shm_boundary != NULL) { /* clear shared memory boundary */
388     free((void *)shm_boundary);
389     shm_boundary = NULL;
390     }
391     ray_done(freall); /* free rendering data */
392     }
393    
394    
395     static void
396 schorsch 2.6 ray_pchild( /* process rays (never returns) */
397     int fd_in,
398     int fd_out
399     )
400 greg 2.1 {
401     int n;
402     register int i;
403 greg 2.15 /* flag child process for quit() */
404     ray_pnprocs = -1;
405 greg 2.1 /* read each ray request set */
406     while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
407     int n2;
408 greg 2.12 if (n < sizeof(RAY))
409 greg 2.1 break;
410     /* get smuggled set length */
411 greg 2.12 n2 = sizeof(RAY)*r_queue[0].crtype - n;
412 greg 2.1 if (n2 < 0)
413     error(INTERNAL, "buffer over-read in ray_pchild");
414     if (n2 > 0) { /* read the rest of the set */
415 greg 2.12 i = readbuf(fd_in, (char *)r_queue + n, n2);
416     if (i != n2)
417 greg 2.1 break;
418     n += n2;
419     }
420 greg 2.12 n /= sizeof(RAY);
421 greg 2.1 /* evaluate rays */
422     for (i = 0; i < n; i++) {
423     r_queue[i].crtype = r_queue[i].rtype;
424     r_queue[i].parent = NULL;
425     r_queue[i].clipset = NULL;
426     r_queue[i].slights = NULL;
427     samplendx++;
428     rayclear(&r_queue[i]);
429     rayvalue(&r_queue[i]);
430     }
431     /* write back our results */
432     i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
433     if (i != sizeof(RAY)*n)
434     error(SYSTEM, "write error in ray_pchild");
435     }
436     if (n)
437     error(SYSTEM, "read error in ray_pchild");
438     ambsync();
439     quit(0); /* normal exit */
440     }
441    
442    
443 schorsch 2.6 extern void
444     ray_popen( /* open the specified # processes */
445     int nadd
446     )
447 greg 2.1 {
448     /* check if our table has room */
449 greg 2.3 if (ray_pnprocs + nadd > MAX_NPROCS)
450     nadd = MAX_NPROCS - ray_pnprocs;
451 greg 2.1 if (nadd <= 0)
452     return;
453 greg 2.13 ambsync(); /* load any new ambient values */
454     fflush(NULL); /* clear pending output */
455 greg 2.1 while (nadd--) { /* fork each new process */
456     int p0[2], p1[2];
457     if (pipe(p0) < 0 || pipe(p1) < 0)
458     error(SYSTEM, "cannot create pipe");
459 greg 2.3 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
460 greg 2.1 int pn; /* close others' descriptors */
461 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
462 greg 2.1 close(r_proc[pn].fd_send);
463     close(r_proc[pn].fd_recv);
464     }
465     close(p0[0]); close(p1[1]);
466     /* following call never returns */
467     ray_pchild(p1[0], p0[1]);
468     }
469 greg 2.3 if (r_proc[ray_pnprocs].pid < 0)
470 greg 2.1 error(SYSTEM, "cannot fork child process");
471     close(p1[0]); close(p0[1]);
472 greg 2.9 /*
473     * Close write stream on exec to avoid multiprocessing deadlock.
474     * No use in read stream without it, so set flag there as well.
475     */
476     fcntl(p1[1], F_SETFD, FD_CLOEXEC);
477     fcntl(p0[0], F_SETFD, FD_CLOEXEC);
478 greg 2.3 r_proc[ray_pnprocs].fd_send = p1[1];
479     r_proc[ray_pnprocs].fd_recv = p0[0];
480     r_proc[ray_pnprocs].npending = 0;
481     ray_pnprocs++;
482     ray_pnidle++;
483 greg 2.1 }
484     }
485    
486    
487 schorsch 2.6 extern void
488     ray_pclose( /* close one or more child processes */
489     int nsub
490     )
491 greg 2.1 {
492     static int inclose = 0;
493     RAY res;
494     /* check recursion */
495     if (inclose)
496     return;
497     inclose++;
498     /* check argument */
499 schorsch 2.5 if ((nsub <= 0) | (nsub > ray_pnprocs))
500 greg 2.3 nsub = ray_pnprocs;
501 greg 2.1 /* clear our ray queue */
502     while (ray_presult(&res,0) > 0)
503     ;
504     /* clean up children */
505     while (nsub--) {
506     int status;
507 greg 2.3 ray_pnprocs--;
508     close(r_proc[ray_pnprocs].fd_recv);
509     close(r_proc[ray_pnprocs].fd_send);
510 greg 2.8 if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
511     status = 127<<8;
512 greg 2.1 if (status) {
513     sprintf(errmsg,
514     "rendering process %d exited with code %d",
515 greg 2.3 r_proc[ray_pnprocs].pid, status>>8);
516 greg 2.1 error(WARNING, errmsg);
517     }
518 greg 2.3 ray_pnidle--;
519 greg 2.1 }
520     inclose--;
521     }
522    
523    
524     void
525     quit(ec) /* make sure exit is called */
526     int ec;
527     {
528 greg 2.15 if (ray_pnprocs > 0) /* close children if any */
529     ray_pclose(0);
530 greg 2.1 exit(ec);
531     }