ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.14
Committed: Wed Dec 21 17:36:06 2005 UTC (18 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R8
Changes since 2.13: +9 -13 lines
Log Message:
Minor cosmetic changes

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.14 static const char RCSid[] = "$Id: raypcalls.c,v 2.13 2005/12/20 20:36:44 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * raypcalls.c - interface for parallel rendering using Radiance
6     *
7     * External symbols declared in ray.h
8     */
9    
10 greg 2.2 #include "copyright.h"
11 greg 2.1
12     /*
13     * These calls are designed similarly to the ones in raycalls.c,
14     * but allow for multiple rendering processes on the same host
15     * machine. There is no sense in specifying more child processes
16     * than you have processors, but one child may help by allowing
17     * asynchronous ray computation in an interactive program, and
18     * will protect the caller from fatal rendering errors.
19     *
20     * You should first read and undrstand the header in raycalls.c,
21     * as some things are explained there that are not repated here.
22     *
23     * The first step is opening one or more rendering processes
24     * with a call to ray_pinit(oct, nproc). Before calling fork(),
25     * ray_pinit() loads the octree and data structures into the
26 greg 2.13 * caller's memory, and ray_popen() synchronizes the ambient
27     * file, if any. Shared memory permits all sorts of queries
28     * that wouldn't be possible otherwise, without causing any real
29 greg 2.1 * memory overhead, since all the static data are shared
30     * between processes. Rays are then traced using a simple
31     * queuing mechanism, explained below.
32     *
33 greg 2.14 * The ray queue buffers RAYQLEN rays before sending to
34     * children, each of which may internally buffer RAYQLEN rays.
35     *
36 greg 2.13 * Rays are queued and returned by a single
37 greg 2.1 * ray_pqueue() call. A ray_pqueue() return
38     * value of 0 indicates that no rays are ready
39     * and the queue is not yet full. A return value of 1
40     * indicates that a ray was returned, though it is probably
41     * not the one you just requested. Rays may be identified by
42     * the rno member of the RAY struct, which is incremented
43     * by the rayorigin() call, or may be set explicitly by
44     * the caller. Below is an example call sequence:
45     *
46     * myRay.rorg = ( ray origin point )
47     * myRay.rdir = ( normalized ray direction )
48     * myRay.rmax = ( maximum length, or zero for no limit )
49 greg 2.11 * rayorigin(&myRay, PRIMARY, NULL, NULL);
50 greg 2.1 * myRay.rno = ( my personal ray identifier )
51     * if (ray_pqueue(&myRay) == 1)
52     * { do something with results }
53     *
54     * Note the differences between this and the simpler ray_trace()
55     * call. In particular, the call may or may not return a value
56     * in the passed ray structure. Also, you need to call rayorigin()
57 greg 2.7 * yourself, which is normally called for you by ray_trace(). The
58     * benefit is that ray_pqueue() will trace rays faster in
59 greg 2.1 * proportion to the number of CPUs you have available on your
60     * system. If the ray queue is full before the call, ray_pqueue()
61     * will block until a result is ready so it can queue this one.
62 greg 2.3 * The global int ray_pnidle indicates the number of currently idle
63 greg 2.1 * children. If you want to check for completed rays without blocking,
64     * or get the results from rays that have been queued without
65     * queuing any new ones, the ray_presult() call is for you:
66     *
67     * if (ray_presult(&myRay, 1) == 1)
68     * { do something with results }
69     *
70     * If the second argument is 1, the call won't block when
71     * results aren't ready, but will immediately return 0.
72     * If the second argument is 0, the call will block
73     * until a value is available, returning 0 only if the
74     * queue is completely empty. A negative return value
75     * indicates that a rendering process died. If this
76     * happens, ray_close(0) is automatically called to close
77 greg 2.3 * all child processes, and ray_pnprocs is set to zero.
78 greg 2.1 *
79     * If you just want to fill the ray queue without checking for
80 greg 2.3 * results, check ray_pnidle and call ray_psend():
81 greg 2.1 *
82 greg 2.3 * while (ray_pnidle) {
83 greg 2.1 * ( set up ray )
84     * ray_psend(&myRay);
85     * }
86     *
87 greg 2.7 * Note that it is a fatal error to call ra_psend() when
88     * ray_pnidle is zero. The ray_presult() and/or ray_pqueue()
89     * functions may be called subsequently to read back the results.
90 greg 2.1 *
91     * When you are done, you may call ray_pdone(1) to close
92     * all child processes and clean up memory used by Radiance.
93     * Any queued ray calculations will be awaited and discarded.
94     * As with ray_done(), ray_pdone(0) hangs onto data files
95     * and fonts that are likely to be used in subsequent renderings.
96     * Whether you want to bother cleaning up memory or not, you
97     * should at least call ray_pclose(0) to clean the child processes.
98     *
99     * Warning: You cannot affect any of the rendering processes
100     * by changing global parameter values onece ray_pinit() has
101     * been called. Changing global parameters will have no effect
102     * until the next call to ray_pinit(), which restarts everything.
103     * If you just want to reap children so that you can alter the
104     * rendering parameters without reloading the scene, use the
105     * ray_pclose(0) and ray_popen(nproc) calls to close
106 greg 2.7 * then restart the child processes after the changes are made.
107 greg 2.1 *
108     * Note: These routines are written to coordinate with the
109     * definitions in raycalls.c, and in fact depend on them.
110     * If you want to trace a ray and get a result synchronously,
111 greg 2.13 * use the ray_trace() call to compute it in the parent process.
112 greg 2.7 * This will not interfere with any subprocess calculations,
113     * but beware that a fatal error may end with a call to quit().
114 greg 2.1 *
115     * Note: One of the advantages of using separate processes
116     * is that it gives the calling program some immunity from
117     * fatal rendering errors. As discussed in raycalls.c,
118     * Radiance tends to throw up its hands and exit at the
119     * first sign of trouble, calling quit() to return control
120 greg 2.7 * to the top level. Although you can avoid exit() with
121 greg 2.1 * your own longjmp() in quit(), the cleanup afterwards
122     * is always suspect. Through the use of subprocesses,
123     * we avoid this pitfall by closing the processes and
124     * returning a negative value from ray_pqueue() or
125     * ray_presult(). If you get a negative value from either
126     * of these calls, you can assume that the processes have
127     * been cleaned up with a call to ray_close(), though you
128     * will have to call ray_pdone() yourself if you want to
129 greg 2.7 * free memory. Obviously, you cannot continue rendering
130     * without risking further errors, but otherwise your
131     * process should not be compromised.
132 greg 2.1 */
133    
134 schorsch 2.6 #include <stdio.h>
135     #include <sys/types.h>
136     #include <sys/wait.h> /* XXX platform */
137    
138     #include "rtprocess.h"
139 greg 2.1 #include "ray.h"
140 schorsch 2.6 #include "ambient.h"
141 greg 2.1 #include "selcall.h"
142    
143     #ifndef RAYQLEN
144 greg 2.13 #define RAYQLEN 12 /* # rays to send at once */
145 greg 2.1 #endif
146    
147     #ifndef MAX_RPROCS
148     #if (FD_SETSIZE/2-4 < 64)
149     #define MAX_NPROCS (FD_SETSIZE/2-4)
150     #else
151     #define MAX_NPROCS 64 /* max. # rendering processes */
152     #endif
153     #endif
154    
155     extern char *shm_boundary; /* boundary of shared memory */
156    
157 greg 2.3 int ray_pnprocs = 0; /* number of child processes */
158     int ray_pnidle = 0; /* number of idle children */
159 greg 2.1
160     static struct child_proc {
161     int pid; /* child process id */
162     int fd_send; /* write to child here */
163     int fd_recv; /* read from child here */
164     int npending; /* # rays in process */
165     unsigned long rno[RAYQLEN]; /* working on these rays */
166     } r_proc[MAX_NPROCS]; /* our child processes */
167    
168     static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
169     static int r_send_next; /* next send ray placement */
170     static int r_recv_first; /* position of first unreported ray */
171     static int r_recv_next; /* next receive ray placement */
172    
173     #define sendq_full() (r_send_next >= RAYQLEN)
174    
175 schorsch 2.6 static int ray_pflush(void);
176 greg 2.13 static void ray_pchild(int fd_in, int fd_out);
177 greg 2.1
178 schorsch 2.6
179     extern void
180     ray_pinit( /* initialize ray-tracing processes */
181     char *otnm,
182     int nproc
183     )
184 greg 2.1 {
185     if (nobjects > 0) /* close old calculation */
186     ray_pdone(0);
187    
188     ray_init(otnm); /* load the shared scene */
189    
190     preload_objs(); /* preload auxiliary data */
191    
192     /* set shared memory boundary */
193     shm_boundary = (char *)malloc(16);
194     strcpy(shm_boundary, "SHM_BOUNDARY");
195    
196     r_send_next = 0; /* set up queue */
197     r_recv_first = r_recv_next = RAYQLEN;
198    
199     ray_popen(nproc); /* fork children */
200     }
201    
202    
203     static int
204 schorsch 2.6 ray_pflush(void) /* send queued rays to idle children */
205 greg 2.1 {
206     int nc, n, nw, i, sfirst;
207    
208 schorsch 2.5 if ((ray_pnidle <= 0) | (r_send_next <= 0))
209 greg 2.1 return(0); /* nothing we can send */
210    
211     sfirst = 0; /* divvy up labor */
212 greg 2.3 nc = ray_pnidle;
213     for (i = ray_pnprocs; nc && i--; ) {
214 greg 2.1 if (r_proc[i].npending > 0)
215     continue; /* child looks busy */
216     n = (r_send_next - sfirst)/nc--;
217     if (!n)
218     continue;
219     /* smuggle set size in crtype */
220     r_queue[sfirst].crtype = n;
221     nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
222     sizeof(RAY)*n);
223     if (nw != sizeof(RAY)*n)
224     return(-1); /* write error */
225     r_proc[i].npending = n;
226     while (n--) /* record ray IDs */
227     r_proc[i].rno[n] = r_queue[sfirst+n].rno;
228     sfirst += r_proc[i].npending;
229 greg 2.3 ray_pnidle--; /* now she's busy */
230 greg 2.1 }
231     if (sfirst != r_send_next)
232     error(CONSISTENCY, "code screwup in ray_pflush");
233     r_send_next = 0;
234     return(sfirst); /* return total # sent */
235     }
236    
237    
238 schorsch 2.6 extern void
239     ray_psend( /* add a ray to our send queue */
240     RAY *r
241     )
242 greg 2.1 {
243     if (r == NULL)
244     return;
245     /* flush output if necessary */
246     if (sendq_full() && ray_pflush() <= 0)
247     error(INTERNAL, "ray_pflush failed in ray_psend");
248    
249 greg 2.14 r_queue[r_send_next++] = *r;
250 greg 2.1 }
251    
252    
253 schorsch 2.6 extern int
254     ray_pqueue( /* queue a ray for computation */
255     RAY *r
256     )
257 greg 2.1 {
258     if (r == NULL)
259     return(0);
260     /* check for full send queue */
261     if (sendq_full()) {
262     RAY mySend;
263     int rval;
264 schorsch 2.4 mySend = *r;
265 greg 2.1 /* wait for a result */
266     rval = ray_presult(r, 0);
267     /* put new ray in queue */
268 greg 2.14 r_queue[r_send_next++] = mySend;
269 greg 2.1 return(rval); /* done */
270     }
271 greg 2.13 /* else add ray to send queue */
272 greg 2.14 r_queue[r_send_next++] = *r;
273 greg 2.1 /* check for returned ray... */
274     if (r_recv_first >= r_recv_next)
275     return(0);
276     /* ...one is sitting in queue */
277 greg 2.14 *r = r_queue[r_recv_first++];
278 greg 2.1 return(1);
279     }
280    
281    
282 schorsch 2.6 extern int
283     ray_presult( /* check for a completed ray */
284     RAY *r,
285     int poll
286     )
287 greg 2.1 {
288     static struct timeval tpoll; /* zero timeval struct */
289     static fd_set readset, errset;
290     int n, ok;
291     register int pn;
292    
293     if (r == NULL)
294     return(0);
295     /* check queued results first */
296     if (r_recv_first < r_recv_next) {
297 greg 2.14 *r = r_queue[r_recv_first++];
298 greg 2.1 return(1);
299     }
300 greg 2.3 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
301 greg 2.1
302     if (ray_pflush() < 0) /* send new rays to process */
303     return(-1);
304     /* reset receive queue */
305     r_recv_first = r_recv_next = RAYQLEN;
306    
307     if (!poll) /* count newly sent unless polling */
308 greg 2.3 n = ray_pnprocs - ray_pnidle;
309 greg 2.1 if (n <= 0) /* return if nothing to await */
310     return(0);
311     getready: /* any children waiting for us? */
312 greg 2.3 for (pn = ray_pnprocs; pn--; )
313 greg 2.1 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
314     FD_ISSET(r_proc[pn].fd_recv, &errset))
315     break;
316     /* call select if we must */
317     if (pn < 0) {
318     FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
319 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
320 greg 2.1 if (r_proc[pn].npending > 0)
321     FD_SET(r_proc[pn].fd_recv, &readset);
322     FD_SET(r_proc[pn].fd_recv, &errset);
323     if (r_proc[pn].fd_recv >= n)
324     n = r_proc[pn].fd_recv + 1;
325     }
326     /* find out who is ready */
327     while ((n = select(n, &readset, (fd_set *)NULL, &errset,
328     poll ? &tpoll : (struct timeval *)NULL)) < 0)
329     if (errno != EINTR) {
330     error(WARNING,
331     "select call failed in ray_presult");
332     ray_pclose(0);
333     return(-1);
334     }
335     if (n > 0) /* go back and get it */
336     goto getready;
337     return(0); /* else poll came up empty */
338     }
339     if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
340     error(CONSISTENCY, "buffer shortage in ray_presult()");
341    
342     /* read rendered ray data */
343     n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
344     sizeof(RAY)*r_proc[pn].npending);
345     if (n > 0) {
346     r_recv_next += n/sizeof(RAY);
347     ok = (n == sizeof(RAY)*r_proc[pn].npending);
348     } else
349     ok = 0;
350     /* reset child's status */
351     FD_CLR(r_proc[pn].fd_recv, &readset);
352     if (n <= 0)
353     FD_CLR(r_proc[pn].fd_recv, &errset);
354     r_proc[pn].npending = 0;
355 greg 2.3 ray_pnidle++;
356 greg 2.1 /* check for rendering errors */
357     if (!ok) {
358     ray_pclose(0); /* process died -- clean up */
359     return(-1);
360     }
361     /* preen returned rays */
362     for (n = r_recv_next - r_recv_first; n--; ) {
363     register RAY *rp = &r_queue[r_recv_first + n];
364     rp->rno = r_proc[pn].rno[n];
365     rp->parent = NULL;
366     rp->newcset = rp->clipset = NULL;
367     rp->rox = NULL;
368     rp->slights = NULL;
369     }
370     /* return first ray received */
371 greg 2.13 *r = r_queue[r_recv_first++];
372 greg 2.1 return(1);
373     }
374    
375    
376 schorsch 2.6 extern void
377     ray_pdone( /* reap children and free data */
378     int freall
379     )
380 greg 2.1 {
381     ray_pclose(0); /* close child processes */
382    
383     if (shm_boundary != NULL) { /* clear shared memory boundary */
384     free((void *)shm_boundary);
385     shm_boundary = NULL;
386     }
387     ray_done(freall); /* free rendering data */
388     }
389    
390    
391     static void
392 schorsch 2.6 ray_pchild( /* process rays (never returns) */
393     int fd_in,
394     int fd_out
395     )
396 greg 2.1 {
397     int n;
398     register int i;
399     /* read each ray request set */
400     while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
401     int n2;
402 greg 2.12 if (n < sizeof(RAY))
403 greg 2.1 break;
404     /* get smuggled set length */
405 greg 2.12 n2 = sizeof(RAY)*r_queue[0].crtype - n;
406 greg 2.1 if (n2 < 0)
407     error(INTERNAL, "buffer over-read in ray_pchild");
408     if (n2 > 0) { /* read the rest of the set */
409 greg 2.12 i = readbuf(fd_in, (char *)r_queue + n, n2);
410     if (i != n2)
411 greg 2.1 break;
412     n += n2;
413     }
414 greg 2.12 n /= sizeof(RAY);
415 greg 2.1 /* evaluate rays */
416     for (i = 0; i < n; i++) {
417     r_queue[i].crtype = r_queue[i].rtype;
418     r_queue[i].parent = NULL;
419     r_queue[i].clipset = NULL;
420     r_queue[i].slights = NULL;
421     samplendx++;
422     rayclear(&r_queue[i]);
423     rayvalue(&r_queue[i]);
424     }
425     /* write back our results */
426     i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
427     if (i != sizeof(RAY)*n)
428     error(SYSTEM, "write error in ray_pchild");
429     }
430     if (n)
431     error(SYSTEM, "read error in ray_pchild");
432     ambsync();
433     quit(0); /* normal exit */
434     }
435    
436    
437 schorsch 2.6 extern void
438     ray_popen( /* open the specified # processes */
439     int nadd
440     )
441 greg 2.1 {
442     /* check if our table has room */
443 greg 2.3 if (ray_pnprocs + nadd > MAX_NPROCS)
444     nadd = MAX_NPROCS - ray_pnprocs;
445 greg 2.1 if (nadd <= 0)
446     return;
447 greg 2.13 ambsync(); /* load any new ambient values */
448     fflush(NULL); /* clear pending output */
449 greg 2.1 while (nadd--) { /* fork each new process */
450     int p0[2], p1[2];
451     if (pipe(p0) < 0 || pipe(p1) < 0)
452     error(SYSTEM, "cannot create pipe");
453 greg 2.3 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
454 greg 2.1 int pn; /* close others' descriptors */
455 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
456 greg 2.1 close(r_proc[pn].fd_send);
457     close(r_proc[pn].fd_recv);
458     }
459     close(p0[0]); close(p1[1]);
460     /* following call never returns */
461     ray_pchild(p1[0], p0[1]);
462     }
463 greg 2.3 if (r_proc[ray_pnprocs].pid < 0)
464 greg 2.1 error(SYSTEM, "cannot fork child process");
465     close(p1[0]); close(p0[1]);
466 greg 2.9 /*
467     * Close write stream on exec to avoid multiprocessing deadlock.
468     * No use in read stream without it, so set flag there as well.
469     */
470     fcntl(p1[1], F_SETFD, FD_CLOEXEC);
471     fcntl(p0[0], F_SETFD, FD_CLOEXEC);
472 greg 2.3 r_proc[ray_pnprocs].fd_send = p1[1];
473     r_proc[ray_pnprocs].fd_recv = p0[0];
474     r_proc[ray_pnprocs].npending = 0;
475     ray_pnprocs++;
476     ray_pnidle++;
477 greg 2.1 }
478     }
479    
480    
481 schorsch 2.6 extern void
482     ray_pclose( /* close one or more child processes */
483     int nsub
484     )
485 greg 2.1 {
486     static int inclose = 0;
487     RAY res;
488     /* check recursion */
489     if (inclose)
490     return;
491     inclose++;
492     /* check argument */
493 schorsch 2.5 if ((nsub <= 0) | (nsub > ray_pnprocs))
494 greg 2.3 nsub = ray_pnprocs;
495 greg 2.1 /* clear our ray queue */
496     while (ray_presult(&res,0) > 0)
497     ;
498     /* clean up children */
499     while (nsub--) {
500     int status;
501 greg 2.3 ray_pnprocs--;
502     close(r_proc[ray_pnprocs].fd_recv);
503     close(r_proc[ray_pnprocs].fd_send);
504 greg 2.8 if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
505     status = 127<<8;
506 greg 2.1 if (status) {
507     sprintf(errmsg,
508     "rendering process %d exited with code %d",
509 greg 2.3 r_proc[ray_pnprocs].pid, status>>8);
510 greg 2.1 error(WARNING, errmsg);
511     }
512 greg 2.3 ray_pnidle--;
513 greg 2.1 }
514     inclose--;
515     }
516    
517    
518     void
519     quit(ec) /* make sure exit is called */
520     int ec;
521     {
522     exit(ec);
523     }