ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.13
Committed: Tue Dec 20 20:36:44 2005 UTC (18 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.12: +14 -13 lines
Log Message:
Added ambient file synchronization and minor fixes

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.13 static const char RCSid[] = "$Id: raypcalls.c,v 2.12 2005/12/17 22:17:51 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * raypcalls.c - interface for parallel rendering using Radiance
6     *
7     * External symbols declared in ray.h
8     */
9    
10 greg 2.2 #include "copyright.h"
11 greg 2.1
12     /*
13     * These calls are designed similarly to the ones in raycalls.c,
14     * but allow for multiple rendering processes on the same host
15     * machine. There is no sense in specifying more child processes
16     * than you have processors, but one child may help by allowing
17     * asynchronous ray computation in an interactive program, and
18     * will protect the caller from fatal rendering errors.
19     *
20     * You should first read and undrstand the header in raycalls.c,
21     * as some things are explained there that are not repated here.
22     *
23     * The first step is opening one or more rendering processes
24     * with a call to ray_pinit(oct, nproc). Before calling fork(),
25     * ray_pinit() loads the octree and data structures into the
26 greg 2.13 * caller's memory, and ray_popen() synchronizes the ambient
27     * file, if any. Shared memory permits all sorts of queries
28     * that wouldn't be possible otherwise, without causing any real
29 greg 2.1 * memory overhead, since all the static data are shared
30     * between processes. Rays are then traced using a simple
31     * queuing mechanism, explained below.
32     *
33 greg 2.13 * The ray queue holds at least RAYQLEN rays, up to
34     * as many rays as there are rendering processes.
35     * Rays are queued and returned by a single
36 greg 2.1 * ray_pqueue() call. A ray_pqueue() return
37     * value of 0 indicates that no rays are ready
38     * and the queue is not yet full. A return value of 1
39     * indicates that a ray was returned, though it is probably
40     * not the one you just requested. Rays may be identified by
41     * the rno member of the RAY struct, which is incremented
42     * by the rayorigin() call, or may be set explicitly by
43     * the caller. Below is an example call sequence:
44     *
45     * myRay.rorg = ( ray origin point )
46     * myRay.rdir = ( normalized ray direction )
47     * myRay.rmax = ( maximum length, or zero for no limit )
48 greg 2.11 * rayorigin(&myRay, PRIMARY, NULL, NULL);
49 greg 2.1 * myRay.rno = ( my personal ray identifier )
50     * if (ray_pqueue(&myRay) == 1)
51     * { do something with results }
52     *
53     * Note the differences between this and the simpler ray_trace()
54     * call. In particular, the call may or may not return a value
55     * in the passed ray structure. Also, you need to call rayorigin()
56 greg 2.7 * yourself, which is normally called for you by ray_trace(). The
57     * benefit is that ray_pqueue() will trace rays faster in
58 greg 2.1 * proportion to the number of CPUs you have available on your
59     * system. If the ray queue is full before the call, ray_pqueue()
60     * will block until a result is ready so it can queue this one.
61 greg 2.3 * The global int ray_pnidle indicates the number of currently idle
62 greg 2.1 * children. If you want to check for completed rays without blocking,
63     * or get the results from rays that have been queued without
64     * queuing any new ones, the ray_presult() call is for you:
65     *
66     * if (ray_presult(&myRay, 1) == 1)
67     * { do something with results }
68     *
69     * If the second argument is 1, the call won't block when
70     * results aren't ready, but will immediately return 0.
71     * If the second argument is 0, the call will block
72     * until a value is available, returning 0 only if the
73     * queue is completely empty. A negative return value
74     * indicates that a rendering process died. If this
75     * happens, ray_close(0) is automatically called to close
76 greg 2.3 * all child processes, and ray_pnprocs is set to zero.
77 greg 2.1 *
78     * If you just want to fill the ray queue without checking for
79 greg 2.3 * results, check ray_pnidle and call ray_psend():
80 greg 2.1 *
81 greg 2.3 * while (ray_pnidle) {
82 greg 2.1 * ( set up ray )
83     * ray_psend(&myRay);
84     * }
85     *
86 greg 2.7 * Note that it is a fatal error to call ra_psend() when
87     * ray_pnidle is zero. The ray_presult() and/or ray_pqueue()
88     * functions may be called subsequently to read back the results.
89 greg 2.1 *
90     * When you are done, you may call ray_pdone(1) to close
91     * all child processes and clean up memory used by Radiance.
92     * Any queued ray calculations will be awaited and discarded.
93     * As with ray_done(), ray_pdone(0) hangs onto data files
94     * and fonts that are likely to be used in subsequent renderings.
95     * Whether you want to bother cleaning up memory or not, you
96     * should at least call ray_pclose(0) to clean the child processes.
97     *
98     * Warning: You cannot affect any of the rendering processes
99     * by changing global parameter values onece ray_pinit() has
100     * been called. Changing global parameters will have no effect
101     * until the next call to ray_pinit(), which restarts everything.
102     * If you just want to reap children so that you can alter the
103     * rendering parameters without reloading the scene, use the
104     * ray_pclose(0) and ray_popen(nproc) calls to close
105 greg 2.7 * then restart the child processes after the changes are made.
106 greg 2.1 *
107     * Note: These routines are written to coordinate with the
108     * definitions in raycalls.c, and in fact depend on them.
109     * If you want to trace a ray and get a result synchronously,
110 greg 2.13 * use the ray_trace() call to compute it in the parent process.
111 greg 2.7 * This will not interfere with any subprocess calculations,
112     * but beware that a fatal error may end with a call to quit().
113 greg 2.1 *
114     * Note: One of the advantages of using separate processes
115     * is that it gives the calling program some immunity from
116     * fatal rendering errors. As discussed in raycalls.c,
117     * Radiance tends to throw up its hands and exit at the
118     * first sign of trouble, calling quit() to return control
119 greg 2.7 * to the top level. Although you can avoid exit() with
120 greg 2.1 * your own longjmp() in quit(), the cleanup afterwards
121     * is always suspect. Through the use of subprocesses,
122     * we avoid this pitfall by closing the processes and
123     * returning a negative value from ray_pqueue() or
124     * ray_presult(). If you get a negative value from either
125     * of these calls, you can assume that the processes have
126     * been cleaned up with a call to ray_close(), though you
127     * will have to call ray_pdone() yourself if you want to
128 greg 2.7 * free memory. Obviously, you cannot continue rendering
129     * without risking further errors, but otherwise your
130     * process should not be compromised.
131 greg 2.1 */
132    
133 schorsch 2.6 #include <stdio.h>
134     #include <sys/types.h>
135     #include <sys/wait.h> /* XXX platform */
136    
137     #include "rtprocess.h"
138 greg 2.1 #include "ray.h"
139 schorsch 2.6 #include "ambient.h"
140 greg 2.1 #include "selcall.h"
141    
142     #ifndef RAYQLEN
143 greg 2.13 #define RAYQLEN 12 /* # rays to send at once */
144 greg 2.1 #endif
145    
146     #ifndef MAX_RPROCS
147     #if (FD_SETSIZE/2-4 < 64)
148     #define MAX_NPROCS (FD_SETSIZE/2-4)
149     #else
150     #define MAX_NPROCS 64 /* max. # rendering processes */
151     #endif
152     #endif
153    
154     extern char *shm_boundary; /* boundary of shared memory */
155    
156 greg 2.3 int ray_pnprocs = 0; /* number of child processes */
157     int ray_pnidle = 0; /* number of idle children */
158 greg 2.1
159     static struct child_proc {
160     int pid; /* child process id */
161     int fd_send; /* write to child here */
162     int fd_recv; /* read from child here */
163     int npending; /* # rays in process */
164     unsigned long rno[RAYQLEN]; /* working on these rays */
165     } r_proc[MAX_NPROCS]; /* our child processes */
166    
167     static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
168     static int r_send_next; /* next send ray placement */
169     static int r_recv_first; /* position of first unreported ray */
170     static int r_recv_next; /* next receive ray placement */
171    
172     #define sendq_full() (r_send_next >= RAYQLEN)
173    
174 schorsch 2.6 static int ray_pflush(void);
175 greg 2.13 static void ray_pchild(int fd_in, int fd_out);
176 greg 2.1
177 schorsch 2.6
178     extern void
179     ray_pinit( /* initialize ray-tracing processes */
180     char *otnm,
181     int nproc
182     )
183 greg 2.1 {
184     if (nobjects > 0) /* close old calculation */
185     ray_pdone(0);
186    
187     ray_init(otnm); /* load the shared scene */
188    
189     preload_objs(); /* preload auxiliary data */
190    
191     /* set shared memory boundary */
192     shm_boundary = (char *)malloc(16);
193     strcpy(shm_boundary, "SHM_BOUNDARY");
194    
195     r_send_next = 0; /* set up queue */
196     r_recv_first = r_recv_next = RAYQLEN;
197    
198     ray_popen(nproc); /* fork children */
199     }
200    
201    
202     static int
203 schorsch 2.6 ray_pflush(void) /* send queued rays to idle children */
204 greg 2.1 {
205     int nc, n, nw, i, sfirst;
206    
207 schorsch 2.5 if ((ray_pnidle <= 0) | (r_send_next <= 0))
208 greg 2.1 return(0); /* nothing we can send */
209    
210     sfirst = 0; /* divvy up labor */
211 greg 2.3 nc = ray_pnidle;
212     for (i = ray_pnprocs; nc && i--; ) {
213 greg 2.1 if (r_proc[i].npending > 0)
214     continue; /* child looks busy */
215     n = (r_send_next - sfirst)/nc--;
216     if (!n)
217     continue;
218     /* smuggle set size in crtype */
219     r_queue[sfirst].crtype = n;
220     nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
221     sizeof(RAY)*n);
222     if (nw != sizeof(RAY)*n)
223     return(-1); /* write error */
224     r_proc[i].npending = n;
225     while (n--) /* record ray IDs */
226     r_proc[i].rno[n] = r_queue[sfirst+n].rno;
227     sfirst += r_proc[i].npending;
228 greg 2.3 ray_pnidle--; /* now she's busy */
229 greg 2.1 }
230     if (sfirst != r_send_next)
231     error(CONSISTENCY, "code screwup in ray_pflush");
232     r_send_next = 0;
233     return(sfirst); /* return total # sent */
234     }
235    
236    
237 schorsch 2.6 extern void
238     ray_psend( /* add a ray to our send queue */
239     RAY *r
240     )
241 greg 2.1 {
242     if (r == NULL)
243     return;
244     /* flush output if necessary */
245     if (sendq_full() && ray_pflush() <= 0)
246     error(INTERNAL, "ray_pflush failed in ray_psend");
247    
248 schorsch 2.4 r_queue[r_send_next] = *r;
249 greg 2.1 r_send_next++;
250     }
251    
252    
253 schorsch 2.6 extern int
254     ray_pqueue( /* queue a ray for computation */
255     RAY *r
256     )
257 greg 2.1 {
258     if (r == NULL)
259     return(0);
260     /* check for full send queue */
261     if (sendq_full()) {
262     RAY mySend;
263     int rval;
264 schorsch 2.4 mySend = *r;
265 greg 2.1 /* wait for a result */
266     rval = ray_presult(r, 0);
267     /* put new ray in queue */
268 schorsch 2.4 r_queue[r_send_next] = mySend;
269 greg 2.1 r_send_next++;
270     return(rval); /* done */
271     }
272 greg 2.13 /* else add ray to send queue */
273 schorsch 2.4 r_queue[r_send_next] = *r;
274 greg 2.1 r_send_next++;
275     /* check for returned ray... */
276     if (r_recv_first >= r_recv_next)
277     return(0);
278     /* ...one is sitting in queue */
279 schorsch 2.4 *r = r_queue[r_recv_first];
280 greg 2.1 r_recv_first++;
281     return(1);
282     }
283    
284    
285 schorsch 2.6 extern int
286     ray_presult( /* check for a completed ray */
287     RAY *r,
288     int poll
289     )
290 greg 2.1 {
291     static struct timeval tpoll; /* zero timeval struct */
292     static fd_set readset, errset;
293     int n, ok;
294     register int pn;
295    
296     if (r == NULL)
297     return(0);
298     /* check queued results first */
299     if (r_recv_first < r_recv_next) {
300 schorsch 2.4 *r = r_queue[r_recv_first];
301 greg 2.1 r_recv_first++;
302     return(1);
303     }
304 greg 2.3 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
305 greg 2.1
306     if (ray_pflush() < 0) /* send new rays to process */
307     return(-1);
308     /* reset receive queue */
309     r_recv_first = r_recv_next = RAYQLEN;
310    
311     if (!poll) /* count newly sent unless polling */
312 greg 2.3 n = ray_pnprocs - ray_pnidle;
313 greg 2.1 if (n <= 0) /* return if nothing to await */
314     return(0);
315     getready: /* any children waiting for us? */
316 greg 2.3 for (pn = ray_pnprocs; pn--; )
317 greg 2.1 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
318     FD_ISSET(r_proc[pn].fd_recv, &errset))
319     break;
320     /* call select if we must */
321     if (pn < 0) {
322     FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
323 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
324 greg 2.1 if (r_proc[pn].npending > 0)
325     FD_SET(r_proc[pn].fd_recv, &readset);
326     FD_SET(r_proc[pn].fd_recv, &errset);
327     if (r_proc[pn].fd_recv >= n)
328     n = r_proc[pn].fd_recv + 1;
329     }
330     /* find out who is ready */
331     while ((n = select(n, &readset, (fd_set *)NULL, &errset,
332     poll ? &tpoll : (struct timeval *)NULL)) < 0)
333     if (errno != EINTR) {
334     error(WARNING,
335     "select call failed in ray_presult");
336     ray_pclose(0);
337     return(-1);
338     }
339     if (n > 0) /* go back and get it */
340     goto getready;
341     return(0); /* else poll came up empty */
342     }
343     if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
344     error(CONSISTENCY, "buffer shortage in ray_presult()");
345    
346     /* read rendered ray data */
347     n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
348     sizeof(RAY)*r_proc[pn].npending);
349     if (n > 0) {
350     r_recv_next += n/sizeof(RAY);
351     ok = (n == sizeof(RAY)*r_proc[pn].npending);
352     } else
353     ok = 0;
354     /* reset child's status */
355     FD_CLR(r_proc[pn].fd_recv, &readset);
356     if (n <= 0)
357     FD_CLR(r_proc[pn].fd_recv, &errset);
358     r_proc[pn].npending = 0;
359 greg 2.3 ray_pnidle++;
360 greg 2.1 /* check for rendering errors */
361     if (!ok) {
362     ray_pclose(0); /* process died -- clean up */
363     return(-1);
364     }
365     /* preen returned rays */
366     for (n = r_recv_next - r_recv_first; n--; ) {
367     register RAY *rp = &r_queue[r_recv_first + n];
368     rp->rno = r_proc[pn].rno[n];
369     rp->parent = NULL;
370     rp->newcset = rp->clipset = NULL;
371     rp->rox = NULL;
372     rp->slights = NULL;
373     }
374     /* return first ray received */
375 greg 2.13 *r = r_queue[r_recv_first++];
376 greg 2.1 return(1);
377     }
378    
379    
380 schorsch 2.6 extern void
381     ray_pdone( /* reap children and free data */
382     int freall
383     )
384 greg 2.1 {
385     ray_pclose(0); /* close child processes */
386    
387     if (shm_boundary != NULL) { /* clear shared memory boundary */
388     free((void *)shm_boundary);
389     shm_boundary = NULL;
390     }
391     ray_done(freall); /* free rendering data */
392     }
393    
394    
395     static void
396 schorsch 2.6 ray_pchild( /* process rays (never returns) */
397     int fd_in,
398     int fd_out
399     )
400 greg 2.1 {
401     int n;
402     register int i;
403     /* read each ray request set */
404     while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
405     int n2;
406 greg 2.12 if (n < sizeof(RAY))
407 greg 2.1 break;
408     /* get smuggled set length */
409 greg 2.12 n2 = sizeof(RAY)*r_queue[0].crtype - n;
410 greg 2.1 if (n2 < 0)
411     error(INTERNAL, "buffer over-read in ray_pchild");
412     if (n2 > 0) { /* read the rest of the set */
413 greg 2.12 i = readbuf(fd_in, (char *)r_queue + n, n2);
414     if (i != n2)
415 greg 2.1 break;
416     n += n2;
417     }
418 greg 2.12 n /= sizeof(RAY);
419 greg 2.1 /* evaluate rays */
420     for (i = 0; i < n; i++) {
421     r_queue[i].crtype = r_queue[i].rtype;
422     r_queue[i].parent = NULL;
423     r_queue[i].clipset = NULL;
424     r_queue[i].slights = NULL;
425     samplendx++;
426     rayclear(&r_queue[i]);
427     rayvalue(&r_queue[i]);
428     }
429     /* write back our results */
430     i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
431     if (i != sizeof(RAY)*n)
432     error(SYSTEM, "write error in ray_pchild");
433     }
434     if (n)
435     error(SYSTEM, "read error in ray_pchild");
436     ambsync();
437     quit(0); /* normal exit */
438     }
439    
440    
441 schorsch 2.6 extern void
442     ray_popen( /* open the specified # processes */
443     int nadd
444     )
445 greg 2.1 {
446     /* check if our table has room */
447 greg 2.3 if (ray_pnprocs + nadd > MAX_NPROCS)
448     nadd = MAX_NPROCS - ray_pnprocs;
449 greg 2.1 if (nadd <= 0)
450     return;
451 greg 2.13 ambsync(); /* load any new ambient values */
452     fflush(NULL); /* clear pending output */
453 greg 2.1 while (nadd--) { /* fork each new process */
454     int p0[2], p1[2];
455     if (pipe(p0) < 0 || pipe(p1) < 0)
456     error(SYSTEM, "cannot create pipe");
457 greg 2.3 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
458 greg 2.1 int pn; /* close others' descriptors */
459 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
460 greg 2.1 close(r_proc[pn].fd_send);
461     close(r_proc[pn].fd_recv);
462     }
463     close(p0[0]); close(p1[1]);
464     /* following call never returns */
465     ray_pchild(p1[0], p0[1]);
466     }
467 greg 2.3 if (r_proc[ray_pnprocs].pid < 0)
468 greg 2.1 error(SYSTEM, "cannot fork child process");
469     close(p1[0]); close(p0[1]);
470 greg 2.9 /*
471     * Close write stream on exec to avoid multiprocessing deadlock.
472     * No use in read stream without it, so set flag there as well.
473     */
474     fcntl(p1[1], F_SETFD, FD_CLOEXEC);
475     fcntl(p0[0], F_SETFD, FD_CLOEXEC);
476 greg 2.3 r_proc[ray_pnprocs].fd_send = p1[1];
477     r_proc[ray_pnprocs].fd_recv = p0[0];
478     r_proc[ray_pnprocs].npending = 0;
479     ray_pnprocs++;
480     ray_pnidle++;
481 greg 2.1 }
482     }
483    
484    
485 schorsch 2.6 extern void
486     ray_pclose( /* close one or more child processes */
487     int nsub
488     )
489 greg 2.1 {
490     static int inclose = 0;
491     RAY res;
492     /* check recursion */
493     if (inclose)
494     return;
495     inclose++;
496     /* check argument */
497 schorsch 2.5 if ((nsub <= 0) | (nsub > ray_pnprocs))
498 greg 2.3 nsub = ray_pnprocs;
499 greg 2.1 /* clear our ray queue */
500     while (ray_presult(&res,0) > 0)
501     ;
502     /* clean up children */
503     while (nsub--) {
504     int status;
505 greg 2.3 ray_pnprocs--;
506     close(r_proc[ray_pnprocs].fd_recv);
507     close(r_proc[ray_pnprocs].fd_send);
508 greg 2.8 if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
509     status = 127<<8;
510 greg 2.1 if (status) {
511     sprintf(errmsg,
512     "rendering process %d exited with code %d",
513 greg 2.3 r_proc[ray_pnprocs].pid, status>>8);
514 greg 2.1 error(WARNING, errmsg);
515     }
516 greg 2.3 ray_pnidle--;
517 greg 2.1 }
518     inclose--;
519     }
520    
521    
522     void
523     quit(ec) /* make sure exit is called */
524     int ec;
525     {
526     exit(ec);
527     }