ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/raypcalls.c
Revision: 2.10
Committed: Fri Apr 15 04:44:51 2005 UTC (19 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.9: +1 -2 lines
Log Message:
Eliminated revf member from RAY struct, as it was never really needed

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.10 static const char RCSid[] = "$Id: raypcalls.c,v 2.9 2004/09/20 16:26:58 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * raypcalls.c - interface for parallel rendering using Radiance
6     *
7     * External symbols declared in ray.h
8     */
9    
10 greg 2.2 #include "copyright.h"
11 greg 2.1
12     /*
13     * These calls are designed similarly to the ones in raycalls.c,
14     * but allow for multiple rendering processes on the same host
15     * machine. There is no sense in specifying more child processes
16     * than you have processors, but one child may help by allowing
17     * asynchronous ray computation in an interactive program, and
18     * will protect the caller from fatal rendering errors.
19     *
20     * You should first read and undrstand the header in raycalls.c,
21     * as some things are explained there that are not repated here.
22     *
23     * The first step is opening one or more rendering processes
24     * with a call to ray_pinit(oct, nproc). Before calling fork(),
25     * ray_pinit() loads the octree and data structures into the
26     * caller's memory. This permits all sorts of queries that
27     * wouldn't be possible otherwise, without causing any real
28     * memory overhead, since all the static data are shared
29     * between processes. Rays are then traced using a simple
30     * queuing mechanism, explained below.
31     *
32     * The ray queue holds as many rays as there are rendering
33     * processes. Rays are queued and returned by a single
34     * ray_pqueue() call. A ray_pqueue() return
35     * value of 0 indicates that no rays are ready
36     * and the queue is not yet full. A return value of 1
37     * indicates that a ray was returned, though it is probably
38     * not the one you just requested. Rays may be identified by
39     * the rno member of the RAY struct, which is incremented
40     * by the rayorigin() call, or may be set explicitly by
41     * the caller. Below is an example call sequence:
42     *
43     * myRay.rorg = ( ray origin point )
44     * myRay.rdir = ( normalized ray direction )
45     * myRay.rmax = ( maximum length, or zero for no limit )
46     * rayorigin(&myRay, NULL, PRIMARY, 1.0);
47     * myRay.rno = ( my personal ray identifier )
48     * if (ray_pqueue(&myRay) == 1)
49     * { do something with results }
50     *
51     * Note the differences between this and the simpler ray_trace()
52     * call. In particular, the call may or may not return a value
53     * in the passed ray structure. Also, you need to call rayorigin()
54 greg 2.7 * yourself, which is normally called for you by ray_trace(). The
55     * benefit is that ray_pqueue() will trace rays faster in
56 greg 2.1 * proportion to the number of CPUs you have available on your
57     * system. If the ray queue is full before the call, ray_pqueue()
58     * will block until a result is ready so it can queue this one.
59 greg 2.3 * The global int ray_pnidle indicates the number of currently idle
60 greg 2.1 * children. If you want to check for completed rays without blocking,
61     * or get the results from rays that have been queued without
62     * queuing any new ones, the ray_presult() call is for you:
63     *
64     * if (ray_presult(&myRay, 1) == 1)
65     * { do something with results }
66     *
67     * If the second argument is 1, the call won't block when
68     * results aren't ready, but will immediately return 0.
69     * If the second argument is 0, the call will block
70     * until a value is available, returning 0 only if the
71     * queue is completely empty. A negative return value
72     * indicates that a rendering process died. If this
73     * happens, ray_close(0) is automatically called to close
74 greg 2.3 * all child processes, and ray_pnprocs is set to zero.
75 greg 2.1 *
76     * If you just want to fill the ray queue without checking for
77 greg 2.3 * results, check ray_pnidle and call ray_psend():
78 greg 2.1 *
79 greg 2.3 * while (ray_pnidle) {
80 greg 2.1 * ( set up ray )
81     * ray_psend(&myRay);
82     * }
83     *
84 greg 2.7 * Note that it is a fatal error to call ra_psend() when
85     * ray_pnidle is zero. The ray_presult() and/or ray_pqueue()
86     * functions may be called subsequently to read back the results.
87 greg 2.1 *
88     * When you are done, you may call ray_pdone(1) to close
89     * all child processes and clean up memory used by Radiance.
90     * Any queued ray calculations will be awaited and discarded.
91     * As with ray_done(), ray_pdone(0) hangs onto data files
92     * and fonts that are likely to be used in subsequent renderings.
93     * Whether you want to bother cleaning up memory or not, you
94     * should at least call ray_pclose(0) to clean the child processes.
95     *
96     * Warning: You cannot affect any of the rendering processes
97     * by changing global parameter values onece ray_pinit() has
98     * been called. Changing global parameters will have no effect
99     * until the next call to ray_pinit(), which restarts everything.
100     * If you just want to reap children so that you can alter the
101     * rendering parameters without reloading the scene, use the
102     * ray_pclose(0) and ray_popen(nproc) calls to close
103 greg 2.7 * then restart the child processes after the changes are made.
104 greg 2.1 *
105     * Note: These routines are written to coordinate with the
106     * definitions in raycalls.c, and in fact depend on them.
107     * If you want to trace a ray and get a result synchronously,
108 greg 2.7 * use the ray_trace() call to compute it in the parent process
109     * This will not interfere with any subprocess calculations,
110     * but beware that a fatal error may end with a call to quit().
111 greg 2.1 *
112     * Note: One of the advantages of using separate processes
113     * is that it gives the calling program some immunity from
114     * fatal rendering errors. As discussed in raycalls.c,
115     * Radiance tends to throw up its hands and exit at the
116     * first sign of trouble, calling quit() to return control
117 greg 2.7 * to the top level. Although you can avoid exit() with
118 greg 2.1 * your own longjmp() in quit(), the cleanup afterwards
119     * is always suspect. Through the use of subprocesses,
120     * we avoid this pitfall by closing the processes and
121     * returning a negative value from ray_pqueue() or
122     * ray_presult(). If you get a negative value from either
123     * of these calls, you can assume that the processes have
124     * been cleaned up with a call to ray_close(), though you
125     * will have to call ray_pdone() yourself if you want to
126 greg 2.7 * free memory. Obviously, you cannot continue rendering
127     * without risking further errors, but otherwise your
128     * process should not be compromised.
129 greg 2.1 */
130    
131 schorsch 2.6 #include <stdio.h>
132     #include <sys/types.h>
133     #include <sys/wait.h> /* XXX platform */
134    
135     #include "rtprocess.h"
136 greg 2.1 #include "ray.h"
137 schorsch 2.6 #include "ambient.h"
138 greg 2.1 #include "selcall.h"
139    
140     #ifndef RAYQLEN
141     #define RAYQLEN 16 /* # rays to send at once */
142     #endif
143    
144     #ifndef MAX_RPROCS
145     #if (FD_SETSIZE/2-4 < 64)
146     #define MAX_NPROCS (FD_SETSIZE/2-4)
147     #else
148     #define MAX_NPROCS 64 /* max. # rendering processes */
149     #endif
150     #endif
151    
152     extern char *shm_boundary; /* boundary of shared memory */
153    
154 greg 2.3 int ray_pnprocs = 0; /* number of child processes */
155     int ray_pnidle = 0; /* number of idle children */
156 greg 2.1
157     static struct child_proc {
158     int pid; /* child process id */
159     int fd_send; /* write to child here */
160     int fd_recv; /* read from child here */
161     int npending; /* # rays in process */
162     unsigned long rno[RAYQLEN]; /* working on these rays */
163     } r_proc[MAX_NPROCS]; /* our child processes */
164    
165     static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
166     static int r_send_next; /* next send ray placement */
167     static int r_recv_first; /* position of first unreported ray */
168     static int r_recv_next; /* next receive ray placement */
169    
170     #define sendq_full() (r_send_next >= RAYQLEN)
171    
172 schorsch 2.6 static int ray_pflush(void);
173     static void ray_pchild(int fd_in, int fd_out);
174 greg 2.1
175 schorsch 2.6
176     extern void
177     ray_pinit( /* initialize ray-tracing processes */
178     char *otnm,
179     int nproc
180     )
181 greg 2.1 {
182     if (nobjects > 0) /* close old calculation */
183     ray_pdone(0);
184    
185     ray_init(otnm); /* load the shared scene */
186    
187     preload_objs(); /* preload auxiliary data */
188    
189     /* set shared memory boundary */
190     shm_boundary = (char *)malloc(16);
191     strcpy(shm_boundary, "SHM_BOUNDARY");
192    
193     r_send_next = 0; /* set up queue */
194     r_recv_first = r_recv_next = RAYQLEN;
195    
196     ray_popen(nproc); /* fork children */
197     }
198    
199    
200     static int
201 schorsch 2.6 ray_pflush(void) /* send queued rays to idle children */
202 greg 2.1 {
203     int nc, n, nw, i, sfirst;
204    
205 schorsch 2.5 if ((ray_pnidle <= 0) | (r_send_next <= 0))
206 greg 2.1 return(0); /* nothing we can send */
207    
208     sfirst = 0; /* divvy up labor */
209 greg 2.3 nc = ray_pnidle;
210     for (i = ray_pnprocs; nc && i--; ) {
211 greg 2.1 if (r_proc[i].npending > 0)
212     continue; /* child looks busy */
213     n = (r_send_next - sfirst)/nc--;
214     if (!n)
215     continue;
216     /* smuggle set size in crtype */
217     r_queue[sfirst].crtype = n;
218     nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
219     sizeof(RAY)*n);
220     if (nw != sizeof(RAY)*n)
221     return(-1); /* write error */
222     r_proc[i].npending = n;
223     while (n--) /* record ray IDs */
224     r_proc[i].rno[n] = r_queue[sfirst+n].rno;
225     sfirst += r_proc[i].npending;
226 greg 2.3 ray_pnidle--; /* now she's busy */
227 greg 2.1 }
228     if (sfirst != r_send_next)
229     error(CONSISTENCY, "code screwup in ray_pflush");
230     r_send_next = 0;
231     return(sfirst); /* return total # sent */
232     }
233    
234    
235 schorsch 2.6 extern void
236     ray_psend( /* add a ray to our send queue */
237     RAY *r
238     )
239 greg 2.1 {
240     if (r == NULL)
241     return;
242     /* flush output if necessary */
243     if (sendq_full() && ray_pflush() <= 0)
244     error(INTERNAL, "ray_pflush failed in ray_psend");
245    
246 schorsch 2.4 r_queue[r_send_next] = *r;
247 greg 2.1 r_send_next++;
248     }
249    
250    
251 schorsch 2.6 extern int
252     ray_pqueue( /* queue a ray for computation */
253     RAY *r
254     )
255 greg 2.1 {
256     if (r == NULL)
257     return(0);
258     /* check for full send queue */
259     if (sendq_full()) {
260     RAY mySend;
261     int rval;
262 schorsch 2.4 mySend = *r;
263 greg 2.1 /* wait for a result */
264     rval = ray_presult(r, 0);
265     /* put new ray in queue */
266 schorsch 2.4 r_queue[r_send_next] = mySend;
267 greg 2.1 r_send_next++;
268     return(rval); /* done */
269     }
270     /* add ray to send queue */
271 schorsch 2.4 r_queue[r_send_next] = *r;
272 greg 2.1 r_send_next++;
273     /* check for returned ray... */
274     if (r_recv_first >= r_recv_next)
275     return(0);
276     /* ...one is sitting in queue */
277 schorsch 2.4 *r = r_queue[r_recv_first];
278 greg 2.1 r_recv_first++;
279     return(1);
280     }
281    
282    
283 schorsch 2.6 extern int
284     ray_presult( /* check for a completed ray */
285     RAY *r,
286     int poll
287     )
288 greg 2.1 {
289     static struct timeval tpoll; /* zero timeval struct */
290     static fd_set readset, errset;
291     int n, ok;
292     register int pn;
293    
294     if (r == NULL)
295     return(0);
296     /* check queued results first */
297     if (r_recv_first < r_recv_next) {
298 schorsch 2.4 *r = r_queue[r_recv_first];
299 greg 2.1 r_recv_first++;
300     return(1);
301     }
302 greg 2.3 n = ray_pnprocs - ray_pnidle; /* pending before flush? */
303 greg 2.1
304     if (ray_pflush() < 0) /* send new rays to process */
305     return(-1);
306     /* reset receive queue */
307     r_recv_first = r_recv_next = RAYQLEN;
308    
309     if (!poll) /* count newly sent unless polling */
310 greg 2.3 n = ray_pnprocs - ray_pnidle;
311 greg 2.1 if (n <= 0) /* return if nothing to await */
312     return(0);
313     getready: /* any children waiting for us? */
314 greg 2.3 for (pn = ray_pnprocs; pn--; )
315 greg 2.1 if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
316     FD_ISSET(r_proc[pn].fd_recv, &errset))
317     break;
318     /* call select if we must */
319     if (pn < 0) {
320     FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
321 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
322 greg 2.1 if (r_proc[pn].npending > 0)
323     FD_SET(r_proc[pn].fd_recv, &readset);
324     FD_SET(r_proc[pn].fd_recv, &errset);
325     if (r_proc[pn].fd_recv >= n)
326     n = r_proc[pn].fd_recv + 1;
327     }
328     /* find out who is ready */
329     while ((n = select(n, &readset, (fd_set *)NULL, &errset,
330     poll ? &tpoll : (struct timeval *)NULL)) < 0)
331     if (errno != EINTR) {
332     error(WARNING,
333     "select call failed in ray_presult");
334     ray_pclose(0);
335     return(-1);
336     }
337     if (n > 0) /* go back and get it */
338     goto getready;
339     return(0); /* else poll came up empty */
340     }
341     if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
342     error(CONSISTENCY, "buffer shortage in ray_presult()");
343    
344     /* read rendered ray data */
345     n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
346     sizeof(RAY)*r_proc[pn].npending);
347     if (n > 0) {
348     r_recv_next += n/sizeof(RAY);
349     ok = (n == sizeof(RAY)*r_proc[pn].npending);
350     } else
351     ok = 0;
352     /* reset child's status */
353     FD_CLR(r_proc[pn].fd_recv, &readset);
354     if (n <= 0)
355     FD_CLR(r_proc[pn].fd_recv, &errset);
356     r_proc[pn].npending = 0;
357 greg 2.3 ray_pnidle++;
358 greg 2.1 /* check for rendering errors */
359     if (!ok) {
360     ray_pclose(0); /* process died -- clean up */
361     return(-1);
362     }
363     /* preen returned rays */
364     for (n = r_recv_next - r_recv_first; n--; ) {
365     register RAY *rp = &r_queue[r_recv_first + n];
366     rp->rno = r_proc[pn].rno[n];
367     rp->parent = NULL;
368     rp->newcset = rp->clipset = NULL;
369     rp->rox = NULL;
370     rp->slights = NULL;
371     }
372     /* return first ray received */
373 schorsch 2.4 *r = r_queue[r_recv_first];
374 greg 2.1 r_recv_first++;
375     return(1);
376     }
377    
378    
379 schorsch 2.6 extern void
380     ray_pdone( /* reap children and free data */
381     int freall
382     )
383 greg 2.1 {
384     ray_pclose(0); /* close child processes */
385    
386     if (shm_boundary != NULL) { /* clear shared memory boundary */
387     free((void *)shm_boundary);
388     shm_boundary = NULL;
389     }
390     ray_done(freall); /* free rendering data */
391     }
392    
393    
394     static void
395 schorsch 2.6 ray_pchild( /* process rays (never returns) */
396     int fd_in,
397     int fd_out
398     )
399 greg 2.1 {
400     int n;
401     register int i;
402     /* read each ray request set */
403     while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
404     int n2;
405     if (n % sizeof(RAY))
406     break;
407     n /= sizeof(RAY);
408     /* get smuggled set length */
409     n2 = r_queue[0].crtype - n;
410     if (n2 < 0)
411     error(INTERNAL, "buffer over-read in ray_pchild");
412     if (n2 > 0) { /* read the rest of the set */
413     i = readbuf(fd_in, (char *)(r_queue+n),
414     sizeof(RAY)*n2);
415     if (i != sizeof(RAY)*n2)
416     break;
417     n += n2;
418     }
419     /* evaluate rays */
420     for (i = 0; i < n; i++) {
421     r_queue[i].crtype = r_queue[i].rtype;
422     r_queue[i].parent = NULL;
423     r_queue[i].clipset = NULL;
424     r_queue[i].slights = NULL;
425     samplendx++;
426     rayclear(&r_queue[i]);
427     rayvalue(&r_queue[i]);
428     }
429     /* write back our results */
430     i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
431     if (i != sizeof(RAY)*n)
432     error(SYSTEM, "write error in ray_pchild");
433     }
434     if (n)
435     error(SYSTEM, "read error in ray_pchild");
436     ambsync();
437     quit(0); /* normal exit */
438     }
439    
440    
441 schorsch 2.6 extern void
442     ray_popen( /* open the specified # processes */
443     int nadd
444     )
445 greg 2.1 {
446     /* check if our table has room */
447 greg 2.3 if (ray_pnprocs + nadd > MAX_NPROCS)
448     nadd = MAX_NPROCS - ray_pnprocs;
449 greg 2.1 if (nadd <= 0)
450     return;
451     fflush(stderr); /* clear pending output */
452     fflush(stdout);
453     while (nadd--) { /* fork each new process */
454     int p0[2], p1[2];
455     if (pipe(p0) < 0 || pipe(p1) < 0)
456     error(SYSTEM, "cannot create pipe");
457 greg 2.3 if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
458 greg 2.1 int pn; /* close others' descriptors */
459 greg 2.3 for (pn = ray_pnprocs; pn--; ) {
460 greg 2.1 close(r_proc[pn].fd_send);
461     close(r_proc[pn].fd_recv);
462     }
463     close(p0[0]); close(p1[1]);
464     /* following call never returns */
465     ray_pchild(p1[0], p0[1]);
466     }
467 greg 2.3 if (r_proc[ray_pnprocs].pid < 0)
468 greg 2.1 error(SYSTEM, "cannot fork child process");
469     close(p1[0]); close(p0[1]);
470 greg 2.9 /*
471     * Close write stream on exec to avoid multiprocessing deadlock.
472     * No use in read stream without it, so set flag there as well.
473     */
474     fcntl(p1[1], F_SETFD, FD_CLOEXEC);
475     fcntl(p0[0], F_SETFD, FD_CLOEXEC);
476 greg 2.3 r_proc[ray_pnprocs].fd_send = p1[1];
477     r_proc[ray_pnprocs].fd_recv = p0[0];
478     r_proc[ray_pnprocs].npending = 0;
479     ray_pnprocs++;
480     ray_pnidle++;
481 greg 2.1 }
482     }
483    
484    
485 schorsch 2.6 extern void
486     ray_pclose( /* close one or more child processes */
487     int nsub
488     )
489 greg 2.1 {
490     static int inclose = 0;
491     RAY res;
492     /* check recursion */
493     if (inclose)
494     return;
495     inclose++;
496     /* check argument */
497 schorsch 2.5 if ((nsub <= 0) | (nsub > ray_pnprocs))
498 greg 2.3 nsub = ray_pnprocs;
499 greg 2.1 /* clear our ray queue */
500     while (ray_presult(&res,0) > 0)
501     ;
502     /* clean up children */
503     while (nsub--) {
504     int status;
505 greg 2.3 ray_pnprocs--;
506     close(r_proc[ray_pnprocs].fd_recv);
507     close(r_proc[ray_pnprocs].fd_send);
508 greg 2.8 if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
509     status = 127<<8;
510 greg 2.1 if (status) {
511     sprintf(errmsg,
512     "rendering process %d exited with code %d",
513 greg 2.3 r_proc[ray_pnprocs].pid, status>>8);
514 greg 2.1 error(WARNING, errmsg);
515     }
516 greg 2.3 ray_pnidle--;
517 greg 2.1 }
518     inclose--;
519     }
520    
521    
522     void
523     quit(ec) /* make sure exit is called */
524     int ec;
525     {
526     exit(ec);
527     }