ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/rayinit.cal
Revision: 2.10
Committed: Thu Feb 29 11:13:34 1996 UTC (28 years, 2 months ago) by greg
Branch: MAIN
Changes since 2.9: +1 -1 lines
Log Message:
updated grey calculation for standard colors

File Contents

# Content
1 { SCCSid "$SunId$ LBL" }
2
3 {
4 Initialization file for Radiance.
5
6 The following are predefined:
7
8 Dx, Dy, Dz - ray direction
9 Nx, Ny, Nz - surface normal
10 Px, Py, Pz - intersection point
11 T - distance from start
12 Ts - single ray (shadow) distance
13 Rdot - ray dot product
14 S - world scale
15 Tx, Ty, Tz - world origin
16 Ix, Iy, Iz - world i unit vector
17 Jx, Jy, Jz - world j unit vector
18 Kx, Ky, Kz - world k unit vector
19 arg(n) - real arguments, arg(0) is count
20
21 For brdf functions, the following are also available:
22
23 NxP, NyP, NzP - perturbed surface normal
24 RdotP - perturbed ray dot product
25 CrP, CgP, CbP - perturbed material color
26
27 For prism1 and prism2 types, the following are available:
28
29 DxA, DyA, DzA - direction to target light source
30
31 Library functions:
32
33 if(a, b, c) - if a positive, return b, else c
34
35 select(N, a1, a2, ..) - return aN
36
37 sqrt(x) - square root function
38
39 sin(x), cos(x), tan(x),
40 asin(x), acos(x),
41 atan(x), atan2(y,x) - standard trig functions
42
43 floor(x), ceil(x) - g.l.b. & l.u.b.
44
45 exp(x), log(x), log10(x) - exponent and log functions
46
47 erf(z), erfc(z) - error functions
48
49 rand(x) - pseudo-random function (0 to 1)
50
51 hermite(p0,p1,r0,r1,t) - 1-dimensional hermite polynomial
52
53 noise3(x,y,z), noise3a(x,y,z),
54 noise3b(x,y,z), noise3c(x,y,z) - noise function with gradient (-1 to 1)
55
56 fnoise3(x,y,z) - fractal noise function (-1 to 1)
57 }
58
59 { Backward compatibility }
60 AC = arg(0);
61 A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5);
62 A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10);
63
64 { Forward compatibility (?) }
65 D(i) = select(i, Dx, Dy, Dz);
66 N(i) = select(i, Nx, Ny, Nz);
67 P(i) = select(i, Px, Py, Pz);
68 noise3d(i,x,y,z) = select(i, noise3a(x,y,z), noise3b(x,y,z), noise3c(x,y,z));
69
70 { More robust versions of library functions }
71 bound(a,x,b) : if(a-x, a, if(x-b, b, x));
72 Acos(x) : acos(bound(-1,x,1));
73 Asin(x) : asin(bound(-1,x,1));
74 Atan2(y,x) : if(x*x+y*y, atan2(y,x), 0);
75 Exp(x) : if(-x-100, 0, exp(x));
76 Sqrt(x) : if(x, sqrt(x), 0);
77
78 { Useful constants }
79 PI : 3.14159265358979323846;
80 DEGREE : PI/180;
81 FTINY : 1e-7;
82
83 { Useful functions }
84 and(a,b) : if( a, b, a );
85 or(a,b) : if( a, a, b );
86 not(a) : if( a, -1, 1 );
87 abs(x) : if( x, x, -x );
88 sgn(x) : if( x, 1, if(-x, -1, 0) );
89 sq(x) : x*x;
90 max(a,b) : if( a-b, a, b );
91 min(a,b) : if( a-b, b, a );
92 inside(a,x,b) : and(x-a,b-x);
93 frac(x) : x - floor(x);
94 mod(n,d) : n - floor(n/d)*d;
95 tri(n,d) : abs( d - mod(n-d,2*d) );
96 linterp(t,p0,p1) : (1-t)*p0 + t*p1;
97
98 noop(v) = v;
99 clip(v) = bound(0,v,1);
100 noneg(v) = if(v,v,0);
101 red(r,g,b) = if(r,r,0);
102 green(r,g,b) = if(g,g,0);
103 blue(r,g,b) = if(b,b,0);
104 grey(r,g,b) = noneg(.265074126*r + .670114631*g + .064811243*b);
105 clip_r(r,g,b) = bound(0,r,1);
106 clip_g(r,g,b) = bound(0,g,1);
107 clip_b(r,g,b) = bound(0,b,1);
108 clipgrey(r,g,b) = min(grey(r,g,b),1);
109
110 dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3);
111 cross(i,v1,v2) : select(i, v1(2)*v2(3) - v1(3)*v2(2),
112 v1(3)*v2(1) - v1(1)*v2(3),
113 v1(1)*v2(2) - v1(2)*v2(1));
114
115 fade(near_val,far_val,dist) = far_val +
116 if (16-dist, (near_val-far_val)/(1+dist*dist), 0);
117
118 bezier(p1, p2, p3, p4, t) = p1 * (1+t*(-3+t*(3-t))) +
119 p2 * 3*t*(1+t*(-2+t)) +
120 p3 * 3*t*t*(1-t) +
121 p4 * t*t*t ;
122
123 bspline(pp, p0, p1, pn, t) = pp * (1/6+t*(-.5+t*(.5-1/6*t))) +
124 p0 * (2/3+t*t*(-1+.5*t)) +
125 p1 * (1/6+t*(.5+t*(.5-.5*t))) +
126 pn * (1/6*t*t*t) ;
127
128 turbulence(x,y,z,s) = if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) +
129 turbulence(x,y,z,2*s) );
130 turbulencea(x,y,z,s) = if( s-1.01, 0,
131 sgn(noise3(x/s,y/s,z/s))*noise3a(x/s,y/s,z/s) +
132 turbulencea(x,y,z,2*s) );
133 turbulenceb(x,y,z,s) = if( s-1.01, 0,
134 sgn(noise3(x/s,y/s,z/s))*noise3b(x/s,y/s,z/s) +
135 turbulenceb(x,y,z,2*s) );
136 turbulencec(x,y,z,s) = if( s-1.01, 0,
137 sgn(noise3(x/s,y/s,z/s))*noise3c(x/s,y/s,z/s) +
138 turbulencec(x,y,z,2*s) );
139
140 { Normal distribution from uniform range (0,1) }
141
142 un2`private(t) : t - (2.515517+t*(.802853+t*.010328))/
143 (1+t*(1.432788+t*(.189269+t*.001308))) ;
144 un1`private(p) : un2`private(sqrt(-2*log(p))) ;
145
146 unif2norm(p) : if( .5-p, -un1`private(p), un1`private(1-p) ) ;
147
148 nrand(x) = unif2norm(rand(x));
149
150 { Local (u,v) coordinates for planar surfaces }
151 crosslen`private = Nx*Nx + Ny*Ny;
152 { U is distance from projected Z-axis }
153 U = if( crosslen`private - FTINY,
154 (Py*Nx - Px*Ny)/crosslen`private,
155 Px);
156 { V is defined so that N = U x V }
157 V = if( crosslen`private - FTINY,
158 Pz - Nz*(Px*Nx + Py*Ny)/crosslen`private,
159 Py);