{ SCCSid "$SunId$ LBL" } { Initialization file for Radiance. The following are predefined: Dx, Dy, Dz - ray direction Nx, Ny, Nz - surface normal Px, Py, Pz - intersection point T - distance from start Rdot - ray dot product S - world scale Tx, Ty, Tz - world origin Ix, Iy, Iz - world i unit vector Jx, Jy, Jz - world j unit vector Kx, Ky, Kz - world k unit vector arg(n) - real arguments, arg(0) is count For brdf functions, the following are also available: NxP, NyP, NzP - perturbed surface normal RdotP - perturbed ray dot product CrP, CgP, CbP - perturbed material color Library functions: if(a, b, c) - if a positive, return b, else c select(N, a1, a2, ..) - return aN sqrt(x) - square root function sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y,x) - standard trig functions floor(x), ceil(x) - g.l.b. & l.u.b. exp(x), log(x), log10(x) - exponent and log functions erf(z), erfc(z) - error functions rand(x) - pseudo-random function (0 to 1) hermite(p0,p1,r0,r1,t) - 1-dimensional hermite polynomial noise3(x,y,z), noise3a(x,y,z), noise3b(x,y,z), noise3c(x,y,z) - noise function with gradient (-1 to 1) fnoise3(x,y,z) - fractal noise function (-1 to 1) } { Backward compatibility } AC = arg(0); A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5); A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10); { Forward compatibility (?) } D(i) = select(i, Dx, Dy, Dz); N(i) = select(i, Nx, Ny, Nz); P(i) = select(i, Px, Py, Pz); noise3d(i,x,y,z) = select(i, noise3a(x,y,z), noise3b(x,y,z), noise3c(x,y,z)); { More robust versions of library functions } bound(a,x,b) : if(a-x, a, if(x-b, b, x)); Acos(x) : acos(bound(-1,x,1)); Asin(x) : asin(bound(-1,x,1)); Exp(x) : if(-x-60, 0, exp(x)); Sqrt(x) : if(x, sqrt(x), 0); { Useful constants } PI : 3.14159265358979323846; DEGREE : PI/180; FTINY : 1e-7; { Useful functions } and(a,b) : if( a, b, a ); or(a,b) : if( a, a, b ); not(a) : if( a, -1, 1 ); abs(x) : if( x, x, -x ); sgn(x) : if( x, 1, if(-x, -1, 0) ); sq(x) : x*x; max(a,b) : if( a-b, a, b ); min(a,b) : if( a-b, b, a ); inside(a,x,b) : and(x-a,b-x); frac(x) : x - floor(x); mod(n,d) : n - floor(n/d)*d; tri(n,d) : abs( d - mod(n-d,2*d) ); linterp(t,p0,p1) : (1-t)*p0 + t*p1; noop(v) = v; clip(v) = bound(0,v,1); noneg(v) = max(0,v); red(r,g,b) = r; green(r,g,b) = g; blue(r,g,b) = b; grey(r,g,b) = .3*r + .59*g + .11*b; clip_r(r,g,b) = bound(0,r,1); clip_g(r,g,b) = bound(0,g,1); clip_b(r,g,b) = bound(0,b,1); clipgrey(r,g,b) = bound(0,grey(r,g,b),1); dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3); cross(i,v1,v2) : select(i, v1(2)*v2(3) - v1(3)*v2(2), v1(3)*v2(1) - v1(1)*v2(3), v1(1)*v2(2) - v1(2)*v2(1)); fade(near_val,far_val,dist) = far_val + if (16-dist, (near_val-far_val)/(1+dist*dist), 0); bezier(p1, p2, p3, p4, t) = p1 * (1+t*(-3+t*(3-t))) + p2 * 3*t*(1+t*(-2+t)) + p3 * 3*t*t*(1-t) + p4 * t*t*t ; bspline(pp, p0, p1, pn, t) = pp * (1/6+t*(-.5+t*(.5-1/6*t))) + p0 * (2/3+t*t*(-1+.5*t)) + p1 * (1/6+t*(.5+t*(.5-.5*t))) + pn * (1/6*t*t*t) ; turbulence(x,y,z,s) = if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) + turbulence(x,y,z,2*s) ); turbulencea(x,y,z,s) = if( s-1.01, 0, sgn(noise3(x/s,y/s,z/s))*noise3a(x/s,y/s,z/s) + turbulencea(x,y,z,2*s) ); turbulenceb(x,y,z,s) = if( s-1.01, 0, sgn(noise3(x/s,y/s,z/s))*noise3b(x/s,y/s,z/s) + turbulenceb(x,y,z,2*s) ); turbulencec(x,y,z,s) = if( s-1.01, 0, sgn(noise3(x/s,y/s,z/s))*noise3c(x/s,y/s,z/s) + turbulencec(x,y,z,2*s) ); { Normal distribution from uniform range (0,1) } un2`private(t) : t - (2.515517+t*(.802853+t*.010328))/ (1+t*(1.432788+t*(.189269+t*.001308))) ; un1`private(p) : un2`private(sqrt(log(1/p/p))) ; unif2norm(p) : if( .5-p, un1`private(p), -un1`private(1-p) ) ; nrand(x) = unif2norm(rand(x)); { Local (u,v) coordinates for planar surfaces } crosslen`private = Nx*Nx + Ny*Ny; { U is distance from origin in XY-plane } U = if( crosslen`private - FTINY, (Py*Nx - Px*Ny)/crosslen`private, Px); { V is defined so that N = U x V } V = if( crosslen`private - FTINY, Pz - Nz*(Px*Nx + Py*Ny)/crosslen`private, Py);