--- ray/src/rt/rayinit.cal 1993/12/09 16:56:28 2.8 +++ ray/src/rt/rayinit.cal 2003/03/11 19:29:05 2.14 @@ -1,5 +1,4 @@ -{ SCCSid "$SunId$ LBL" } - +{ RCSid $Id: rayinit.cal,v 2.14 2003/03/11 19:29:05 greg Exp $ } { Initialization file for Radiance. @@ -18,12 +17,20 @@ Kx, Ky, Kz - world k unit vector arg(n) - real arguments, arg(0) is count + For mesh objects, the following are available: + + Lu, Lv - local (u,v) coordinates + For brdf functions, the following are also available: NxP, NyP, NzP - perturbed surface normal RdotP - perturbed ray dot product CrP, CgP, CbP - perturbed material color + For prism1 and prism2 types, the following are available: + + DxA, DyA, DzA - direction to target light source + Library functions: if(a, b, c) - if a positive, return b, else c @@ -46,8 +53,8 @@ hermite(p0,p1,r0,r1,t) - 1-dimensional hermite polynomial - noise3(x,y,z), noise3a(x,y,z), - noise3b(x,y,z), noise3c(x,y,z) - noise function with gradient (-1 to 1) + noise3(x,y,z), noise3x(x,y,z), + noise3y(x,y,z), noise3z(x,y,z) - noise function with gradient (-1 to 1) fnoise3(x,y,z) - fractal noise function (-1 to 1) } @@ -57,11 +64,15 @@ AC = arg(0); A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5); A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10); +noise3a(x,y,z) : noise3x(x,y,z); +noise3b(x,y,z) : noise3y(x,y,z); +noise3c(x,y,z) : noise3z(x,y,z); + { Forward compatibility (?) } D(i) = select(i, Dx, Dy, Dz); N(i) = select(i, Nx, Ny, Nz); P(i) = select(i, Px, Py, Pz); -noise3d(i,x,y,z) = select(i, noise3a(x,y,z), noise3b(x,y,z), noise3c(x,y,z)); +noise3d(i,x,y,z) : select(i, noise3x(x,y,z), noise3y(x,y,z), noise3z(x,y,z)); { More robust versions of library functions } bound(a,x,b) : if(a-x, a, if(x-b, b, x)); @@ -80,6 +91,7 @@ FTINY : 1e-7; and(a,b) : if( a, b, a ); or(a,b) : if( a, a, b ); not(a) : if( a, -1, 1 ); +xor(a,b) : if( a, not(b), b ); abs(x) : if( x, x, -x ); sgn(x) : if( x, 1, if(-x, -1, 0) ); sq(x) : x*x; @@ -91,65 +103,65 @@ mod(n,d) : n - floor(n/d)*d; tri(n,d) : abs( d - mod(n-d,2*d) ); linterp(t,p0,p1) : (1-t)*p0 + t*p1; -noop(v) = v; -clip(v) = bound(0,v,1); -noneg(v) = if(v,v,0); -red(r,g,b) = if(r,r,0); -green(r,g,b) = if(g,g,0); -blue(r,g,b) = if(b,b,0); -grey(r,g,b) = noneg(.263*r + .655*g + .082*b); -clip_r(r,g,b) = bound(0,r,1); -clip_g(r,g,b) = bound(0,g,1); -clip_b(r,g,b) = bound(0,b,1); -clipgrey(r,g,b) = min(grey(r,g,b),1); +noop(v) : v; +clip(v) : bound(0,v,1); +noneg(v) : if(v,v,0); +red(r,g,b) : if(r,r,0); +green(r,g,b) : if(g,g,0); +blue(r,g,b) : if(b,b,0); +grey(r,g,b) : noneg(.265074126*r + .670114631*g + .064811243*b); +clip_r(r,g,b) : bound(0,r,1); +clip_g(r,g,b) : bound(0,g,1); +clip_b(r,g,b) : bound(0,b,1); +clipgrey(r,g,b) : min(grey(r,g,b),1); dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3); cross(i,v1,v2) : select(i, v1(2)*v2(3) - v1(3)*v2(2), v1(3)*v2(1) - v1(1)*v2(3), v1(1)*v2(2) - v1(2)*v2(1)); -fade(near_val,far_val,dist) = far_val + +fade(near_val,far_val,dist) : far_val + if (16-dist, (near_val-far_val)/(1+dist*dist), 0); -bezier(p1, p2, p3, p4, t) = p1 * (1+t*(-3+t*(3-t))) + +bezier(p1, p2, p3, p4, t) : p1 * (1+t*(-3+t*(3-t))) + p2 * 3*t*(1+t*(-2+t)) + p3 * 3*t*t*(1-t) + p4 * t*t*t ; -bspline(pp, p0, p1, pn, t) = pp * (1/6+t*(-.5+t*(.5-1/6*t))) + +bspline(pp, p0, p1, pn, t) : pp * (1/6+t*(-.5+t*(.5-1/6*t))) + p0 * (2/3+t*t*(-1+.5*t)) + p1 * (1/6+t*(.5+t*(.5-.5*t))) + pn * (1/6*t*t*t) ; -turbulence(x,y,z,s) = if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) + +turbulence(x,y,z,s) : if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) + turbulence(x,y,z,2*s) ); -turbulencea(x,y,z,s) = if( s-1.01, 0, - sgn(noise3(x/s,y/s,z/s))*noise3a(x/s,y/s,z/s) + - turbulencea(x,y,z,2*s) ); -turbulenceb(x,y,z,s) = if( s-1.01, 0, - sgn(noise3(x/s,y/s,z/s))*noise3b(x/s,y/s,z/s) + - turbulenceb(x,y,z,2*s) ); -turbulencec(x,y,z,s) = if( s-1.01, 0, - sgn(noise3(x/s,y/s,z/s))*noise3c(x/s,y/s,z/s) + - turbulencec(x,y,z,2*s) ); +turbulencex(x,y,z,s) : if( s-1.01, 0, + sgn(noise3(x/s,y/s,z/s))*noise3x(x/s,y/s,z/s) + + turbulencex(x,y,z,2*s) ); +turbulencey(x,y,z,s) : if( s-1.01, 0, + sgn(noise3(x/s,y/s,z/s))*noise3y(x/s,y/s,z/s) + + turbulencey(x,y,z,2*s) ); +turbulencez(x,y,z,s) : if( s-1.01, 0, + sgn(noise3(x/s,y/s,z/s))*noise3z(x/s,y/s,z/s) + + turbulencez(x,y,z,2*s) ); { Normal distribution from uniform range (0,1) } -un2`private(t) : t - (2.515517+t*(.802853+t*.010328))/ +un2`P(t) : t - (2.515517+t*(.802853+t*.010328))/ (1+t*(1.432788+t*(.189269+t*.001308))) ; -un1`private(p) : un2`private(sqrt(-2*log(p))) ; +un1`P(p) : un2`P(sqrt(-2*log(p))) ; -unif2norm(p) : if( .5-p, -un1`private(p), un1`private(1-p) ) ; +unif2norm(p) : if( .5-p, -un1`P(p), un1`P(1-p) ) ; nrand(x) = unif2norm(rand(x)); { Local (u,v) coordinates for planar surfaces } -crosslen`private = Nx*Nx + Ny*Ny; +crosslen`P = Nx*Nx + Ny*Ny; { U is distance from projected Z-axis } -U = if( crosslen`private - FTINY, - (Py*Nx - Px*Ny)/crosslen`private, +U = if( crosslen`P - FTINY, + (Py*Nx - Px*Ny)/crosslen`P, Px); { V is defined so that N = U x V } -V = if( crosslen`private - FTINY, - Pz - Nz*(Px*Nx + Py*Ny)/crosslen`private, +V = if( crosslen`P - FTINY, + Pz - Nz*(Px*Nx + Py*Ny)/crosslen`P, Py);