ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/rayinit.cal
(Generate patch)

Comparing ray/src/rt/rayinit.cal (file contents):
Revision 2.1 by greg, Tue Nov 12 17:10:31 1991 UTC vs.
Revision 2.19 by greg, Mon Jun 10 13:56:52 2019 UTC

# Line 1 | Line 1
1 < { SCCSid "$SunId$ LBL" }
2 <
1 > { RCSid $Id$ }
2   {
3          Initialization file for Radiance.
4  
# Line 9 | Line 8
8          Nx, Ny, Nz                      - surface normal
9          Px, Py, Pz                      - intersection point
10          T                               - distance from start
11 +        Ts                              - single ray (shadow) distance
12          Rdot                            - ray dot product
13          S                               - world scale
14          Tx, Ty, Tz                      - world origin
# Line 17 | Line 17
17          Kx, Ky, Kz                      - world k unit vector
18          arg(n)                          - real arguments, arg(0) is count
19  
20 <        For brdf functions, the following are also available:
20 >        For mesh objects, the following are available:
21  
22 +        Lu, Lv                          - local (u,v) coordinates
23 +
24 +        For *func & *data materials, the following are also available:
25 +
26          NxP, NyP, NzP                   - perturbed surface normal
27          RdotP                           - perturbed ray dot product
28          CrP, CgP, CbP                   - perturbed material color
29  
30 +        For prism1 and prism2 types, the following are available:
31 +
32 +        DxA, DyA, DzA                   - direction to target light source
33 +
34          Library functions:
35  
36          if(a, b, c)                     - if a positive, return b, else c
37  
38          select(N, a1, a2, ..)           - return aN
39  
40 +        min(a1, a2, ..)                 - return minimum argument
41 +        max(a1, a2, ..)                 - return maximum argument
42 +
43          sqrt(x)                         - square root function
44  
45          sin(x), cos(x), tan(x),
46          asin(x), acos(x),
47 <        atan(x), atan2(y,x)             - standard trig functions
47 >        atan(x), atan2(y,x)             - standard trig functions (radians)
48  
49          floor(x), ceil(x)               - g.l.b. & l.u.b.
50  
# Line 43 | Line 54
54  
55          rand(x)                         - pseudo-random function (0 to 1)
56  
57 <        hermite(p0,p1,r0,r1,t)          - 1-dimensional hermite polynomial
57 >        noise3(x,y,z), noise3x(x,y,z),
58 >        noise3y(x,y,z), noise3z(x,y,z)  - noise function with gradient (-1 to 1)
59  
48        noise3(x,y,z), noise3a(x,y,z),
49        noise3b(x,y,z), noise3c(x,y,z)  - noise function with gradient (-1 to 1)
50
60          fnoise3(x,y,z)                  - fractal noise function (-1 to 1)
61   }
62  
# Line 56 | Line 65 | AC = arg(0);
65   A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5);
66   A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10);
67  
68 + noise3a(x,y,z) : noise3x(x,y,z);
69 + noise3b(x,y,z) : noise3y(x,y,z);
70 + noise3c(x,y,z) : noise3z(x,y,z);
71 +
72                          { Forward compatibility (?) }
73   D(i) = select(i, Dx, Dy, Dz);
74   N(i) = select(i, Nx, Ny, Nz);
75   P(i) = select(i, Px, Py, Pz);
76 < noise3d(i,x,y,z) = select(i, noise3a(x,y,z), noise3b(x,y,z), noise3c(x,y,z));
76 > noise3d(i,x,y,z) : select(i, noise3x(x,y,z), noise3y(x,y,z), noise3z(x,y,z));
77  
78                          { More robust versions of library functions }
79   bound(a,x,b) : if(a-x, a, if(x-b, b, x));
80   Acos(x) : acos(bound(-1,x,1));
81   Asin(x) : asin(bound(-1,x,1));
82 < Exp(x) : if(-x-60, 0, exp(x));
82 > Atan2(y,x) : if(x*x+y*y, atan2(y,x), 0);
83 > Exp(x) : if(-x-100, 0, exp(x));
84   Sqrt(x) : if(x, sqrt(x), 0);
85  
86                          { Useful constants }
# Line 78 | Line 92 | FTINY : 1e-7;
92   and(a,b) : if( a, b, a );
93   or(a,b) : if( a, a, b );
94   not(a) : if( a, -1, 1 );
95 + xor(a,b) : if( a, not(b), b );
96   abs(x) : if( x, x, -x );
97   sgn(x) : if( x, 1, if(-x, -1, 0) );
98   sq(x) : x*x;
84 max(a,b) : if( a-b, a, b );
85 min(a,b) : if( a-b, b, a );
99   inside(a,x,b) : and(x-a,b-x);
100   frac(x) : x - floor(x);
101   mod(n,d) : n - floor(n/d)*d;
102   tri(n,d) : abs( d - mod(n-d,2*d) );
103   linterp(t,p0,p1) : (1-t)*p0 + t*p1;
104  
105 < noop(v) = v;
106 < clip(v) = bound(0,v,1);
107 < noneg(v) = if(v,v,0);
108 < red(r,g,b) = if(r,r,0);
109 < green(r,g,b) = if(g,g,0);
110 < blue(r,g,b) = if(b,b,0);
111 < grey(r,g,b) = .3*r + .59*g + .11*b;
112 < clip_r(r,g,b) = bound(0,r,1);
113 < clip_g(r,g,b) = bound(0,g,1);
114 < clip_b(r,g,b) = bound(0,b,1);
115 < clipgrey(r,g,b) = bound(0,grey(r,g,b),1);
105 > noop(v) : v;
106 > clip(v) : bound(0,v,1);
107 > noneg(v) : if(v,v,0);
108 > red(r,g,b) : if(r,r,0);
109 > green(r,g,b) : if(g,g,0);
110 > blue(r,g,b) : if(b,b,0);
111 > grey(r,g,b) : noneg(.265074126*r + .670114631*g + .064811243*b);
112 > clip_r(r,g,b) : bound(0,r,1);
113 > clip_g(r,g,b) : bound(0,g,1);
114 > clip_b(r,g,b) : bound(0,b,1);
115 > clipgrey(r,g,b) : min(grey(r,g,b),1);
116  
117   dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3);
118   cross(i,v1,v2) : select(i,      v1(2)*v2(3) - v1(3)*v2(2),
119                                  v1(3)*v2(1) - v1(1)*v2(3),
120                                  v1(1)*v2(2) - v1(2)*v2(1));
121  
122 < fade(near_val,far_val,dist) = far_val +
122 > fade(near_val,far_val,dist) : far_val +
123                  if (16-dist, (near_val-far_val)/(1+dist*dist), 0);
124  
125 < bezier(p1, p2, p3, p4, t) =     p1 * (1+t*(-3+t*(3-t))) +
125 > hermite(p0,p1,r0,r1,t) :        p0 * ((2*t-3)*t*t+1) +
126 >                                p1 * (-2*t+3)*t*t +
127 >                                r0 * (((t-2)*t+1)*t) +
128 >                                r1 * ((t-1)*t*t);
129 >
130 > bezier(p1, p2, p3, p4, t) :     p1 * (1+t*(-3+t*(3-t))) +
131                                  p2 * 3*t*(1+t*(-2+t)) +
132                                  p3 * 3*t*t*(1-t) +
133                                  p4 * t*t*t ;
134  
135 < bspline(pp, p0, p1, pn, t) =    pp * (1/6+t*(-.5+t*(.5-1/6*t))) +
135 > bspline(pp, p0, p1, pn, t) :    pp * (1/6+t*(-.5+t*(.5-1/6*t))) +
136                                  p0 * (2/3+t*t*(-1+.5*t)) +
137                                  p1 * (1/6+t*(.5+t*(.5-.5*t))) +
138                                  pn * (1/6*t*t*t) ;
139  
140 < turbulence(x,y,z,s) = if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) +
140 > turbulence(x,y,z,s) : if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) +
141                                                  turbulence(x,y,z,2*s) );
142 < turbulencea(x,y,z,s) = if( s-1.01, 0,
143 <                        sgn(noise3(x/s,y/s,z/s))*noise3a(x/s,y/s,z/s) +
144 <                        turbulencea(x,y,z,2*s) );
145 < turbulenceb(x,y,z,s) = if( s-1.01, 0,
146 <                        sgn(noise3(x/s,y/s,z/s))*noise3b(x/s,y/s,z/s) +
147 <                        turbulenceb(x,y,z,2*s) );
148 < turbulencec(x,y,z,s) = if( s-1.01, 0,
149 <                        sgn(noise3(x/s,y/s,z/s))*noise3c(x/s,y/s,z/s) +
150 <                        turbulencec(x,y,z,2*s) );
142 > turbulencex(x,y,z,s) : if( s-1.01, 0,
143 >                        sgn(noise3(x/s,y/s,z/s))*noise3x(x/s,y/s,z/s) +
144 >                        turbulencex(x,y,z,2*s) );
145 > turbulencey(x,y,z,s) : if( s-1.01, 0,
146 >                        sgn(noise3(x/s,y/s,z/s))*noise3y(x/s,y/s,z/s) +
147 >                        turbulencey(x,y,z,2*s) );
148 > turbulencez(x,y,z,s) : if( s-1.01, 0,
149 >                        sgn(noise3(x/s,y/s,z/s))*noise3z(x/s,y/s,z/s) +
150 >                        turbulencez(x,y,z,2*s) );
151  
152                          { Normal distribution from uniform range (0,1) }
153  
154 < un2`private(t) : t - (2.515517+t*(.802853+t*.010328))/
154 > un2`P.(t) : t - (2.515517+t*(.802853+t*.010328))/
155                  (1+t*(1.432788+t*(.189269+t*.001308))) ;
156 < un1`private(p) : un2`private(sqrt(log(1/p/p))) ;
156 > un1`P.(p) : un2`P.(sqrt(-2*log(p))) ;
157  
158 < unif2norm(p) : if( .5-p, un1`private(p), -un1`private(1-p) ) ;
158 > unif2norm(p) : if( .5-p, -un1`P.(p), un1`P.(1-p) ) ;
159  
160   nrand(x) = unif2norm(rand(x));
161  
162                          { Local (u,v) coordinates for planar surfaces }
163 < crosslen`private = Nx*Nx + Ny*Ny;
164 <                        { U is distance from origin in XY-plane }
165 < U = if( crosslen`private - FTINY,
166 <                (Py*Nx - Px*Ny)/crosslen`private,
163 > crosslen`P. = Nx*Nx + Ny*Ny;
164 >                        { U is distance from projected Z-axis }
165 > U = if( crosslen`P. - FTINY,
166 >                (Py*Nx - Px*Ny)/crosslen`P.,
167                  Px);
168                          { V is defined so that N = U x V }
169 < V = if( crosslen`private - FTINY,
170 <                Pz - Nz*(Px*Nx + Py*Ny)/crosslen`private,
169 > V = if( crosslen`P. - FTINY,
170 >                Pz - Nz*(Px*Nx + Py*Ny)/crosslen`P.,
171                  Py);
172 +
173 +                        { Local hemisphere direction for *func & *data types }
174 +                        { last 3 real args = unnormalized up-vector }
175 + Vux`P. = arg(AC-1)*NzP - arg(AC)*NyP;
176 + Vuy`P. = arg(AC)*NxP - arg(AC-2)*NzP;
177 + Vuz`P. = arg(AC-2)*NyP - arg(AC-1)*NxP;
178 + vnorm`P. = 1/sqrt(Vux`P.*Vux`P. + Vuy`P.*Vuy`P. + Vuz`P.*Vuz`P.);
179 + Vnx`P. = Vux`P.*vnorm`P.;
180 + Vny`P. = Vuy`P.*vnorm`P.;
181 + Vnz`P. = Vuz`P.*vnorm`P.;
182 + Unx`P. = NyP*Vnz`P. - NzP*Vny`P.;
183 + Uny`P. = NzP*Vnx`P. - NxP*Vnz`P.;
184 + Unz`P. = NxP*Vny`P. - NyP*Vnx`P.;
185 +                        { Transform vectors, normalized (dx,dy,dz) away from surf }
186 + Ldx(dx,dy,dz) = dx*Unx`P. + dy*Uny`P. + dz*Unz`P.;
187 + Ldy(dx,dy,dz) = dx*Vnx`P. + dy*Vny`P. + dz*Vnz`P.;
188 + Ldz(dx,dy,dz) = dx*NxP + dy*NyP + dz*NzP;
189 +                        { Incident vector transformed to our coords }
190 + Idx = Ldx(-Dx,-Dy,-Dz);
191 + Idy = Ldy(-Dx,-Dy,-Dz);
192 + Idz = RdotP;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines