| 1 | < | { SCCSid "$SunId$ LBL" } | 
| 2 | < |  | 
| 1 | > | { RCSid $Id$ } | 
| 2 |  | { | 
| 3 |  | Initialization file for Radiance. | 
| 4 |  |  | 
| 8 |  | Nx, Ny, Nz                      - surface normal | 
| 9 |  | Px, Py, Pz                      - intersection point | 
| 10 |  | T                               - distance from start | 
| 11 | + | Ts                              - single ray (shadow) distance | 
| 12 |  | Rdot                            - ray dot product | 
| 13 |  | S                               - world scale | 
| 14 |  | Tx, Ty, Tz                      - world origin | 
| 17 |  | Kx, Ky, Kz                      - world k unit vector | 
| 18 |  | arg(n)                          - real arguments, arg(0) is count | 
| 19 |  |  | 
| 20 | < | For brdf functions, the following are also available: | 
| 20 | > | For mesh objects, the following are available: | 
| 21 |  |  | 
| 22 | + | Lu, Lv                          - local (u,v) coordinates | 
| 23 | + |  | 
| 24 | + | For *func & *data materials, the following are also available: | 
| 25 | + |  | 
| 26 |  | NxP, NyP, NzP                   - perturbed surface normal | 
| 27 |  | RdotP                           - perturbed ray dot product | 
| 28 |  | CrP, CgP, CbP                   - perturbed material color | 
| 29 |  |  | 
| 30 | + | For prism1 and prism2 types, the following are available: | 
| 31 | + |  | 
| 32 | + | DxA, DyA, DzA                   - direction to target light source | 
| 33 | + |  | 
| 34 |  | Library functions: | 
| 35 |  |  | 
| 36 |  | if(a, b, c)                     - if a positive, return b, else c | 
| 37 |  |  | 
| 38 |  | select(N, a1, a2, ..)           - return aN | 
| 39 |  |  | 
| 40 | + | min(a1, a2, ..)                 - return minimum argument | 
| 41 | + | max(a1, a2, ..)                 - return maximum argument | 
| 42 | + |  | 
| 43 |  | sqrt(x)                         - square root function | 
| 44 |  |  | 
| 45 |  | sin(x), cos(x), tan(x), | 
| 46 |  | asin(x), acos(x), | 
| 47 | < | atan(x), atan2(y,x)             - standard trig functions | 
| 47 | > | atan(x), atan2(y,x)             - standard trig functions (radians) | 
| 48 |  |  | 
| 49 |  | floor(x), ceil(x)               - g.l.b. & l.u.b. | 
| 50 |  |  | 
| 54 |  |  | 
| 55 |  | rand(x)                         - pseudo-random function (0 to 1) | 
| 56 |  |  | 
| 57 | < | hermite(p0,p1,r0,r1,t)          - 1-dimensional hermite polynomial | 
| 57 | > | noise3(x,y,z), noise3x(x,y,z), | 
| 58 | > | noise3y(x,y,z), noise3z(x,y,z)  - noise function with gradient (-1 to 1) | 
| 59 |  |  | 
| 48 | – | noise3(x,y,z), noise3a(x,y,z), | 
| 49 | – | noise3b(x,y,z), noise3c(x,y,z)  - noise function with gradient (-1 to 1) | 
| 50 | – |  | 
| 60 |  | fnoise3(x,y,z)                  - fractal noise function (-1 to 1) | 
| 61 |  | } | 
| 62 |  |  | 
| 65 |  | A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5); | 
| 66 |  | A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10); | 
| 67 |  |  | 
| 68 | + | noise3a(x,y,z) : noise3x(x,y,z); | 
| 69 | + | noise3b(x,y,z) : noise3y(x,y,z); | 
| 70 | + | noise3c(x,y,z) : noise3z(x,y,z); | 
| 71 | + |  | 
| 72 |  | { Forward compatibility (?) } | 
| 73 |  | D(i) = select(i, Dx, Dy, Dz); | 
| 74 |  | N(i) = select(i, Nx, Ny, Nz); | 
| 75 |  | P(i) = select(i, Px, Py, Pz); | 
| 76 | < | noise3d(i,x,y,z) = select(i, noise3a(x,y,z), noise3b(x,y,z), noise3c(x,y,z)); | 
| 76 | > | noise3d(i,x,y,z) : select(i, noise3x(x,y,z), noise3y(x,y,z), noise3z(x,y,z)); | 
| 77 |  |  | 
| 78 |  | { More robust versions of library functions } | 
| 79 |  | bound(a,x,b) : if(a-x, a, if(x-b, b, x)); | 
| 80 |  | Acos(x) : acos(bound(-1,x,1)); | 
| 81 |  | Asin(x) : asin(bound(-1,x,1)); | 
| 82 | < | Exp(x) : if(-x-60, 0, exp(x)); | 
| 82 | > | Atan2(y,x) : if(x*x+y*y, atan2(y,x), 0); | 
| 83 | > | Exp(x) : if(-x-100, 0, exp(x)); | 
| 84 |  | Sqrt(x) : if(x, sqrt(x), 0); | 
| 85 |  |  | 
| 86 |  | { Useful constants } | 
| 92 |  | and(a,b) : if( a, b, a ); | 
| 93 |  | or(a,b) : if( a, a, b ); | 
| 94 |  | not(a) : if( a, -1, 1 ); | 
| 95 | + | xor(a,b) : if( a, not(b), b ); | 
| 96 |  | abs(x) : if( x, x, -x ); | 
| 97 |  | sgn(x) : if( x, 1, if(-x, -1, 0) ); | 
| 98 |  | sq(x) : x*x; | 
| 84 | – | max(a,b) : if( a-b, a, b ); | 
| 85 | – | min(a,b) : if( a-b, b, a ); | 
| 99 |  | inside(a,x,b) : and(x-a,b-x); | 
| 100 |  | frac(x) : x - floor(x); | 
| 101 |  | mod(n,d) : n - floor(n/d)*d; | 
| 102 |  | tri(n,d) : abs( d - mod(n-d,2*d) ); | 
| 103 |  | linterp(t,p0,p1) : (1-t)*p0 + t*p1; | 
| 104 |  |  | 
| 105 | < | noop(v) = v; | 
| 106 | < | clip(v) = bound(0,v,1); | 
| 107 | < | noneg(v) = max(0,v); | 
| 108 | < | red(r,g,b) = r; | 
| 109 | < | green(r,g,b) = g; | 
| 110 | < | blue(r,g,b) = b; | 
| 111 | < | grey(r,g,b) = .3*r + .59*g + .11*b; | 
| 112 | < | clip_r(r,g,b) = bound(0,r,1); | 
| 113 | < | clip_g(r,g,b) = bound(0,g,1); | 
| 114 | < | clip_b(r,g,b) = bound(0,b,1); | 
| 115 | < | clipgrey(r,g,b) = bound(0,grey(r,g,b),1); | 
| 105 | > | noop(v) : v; | 
| 106 | > | clip(v) : bound(0,v,1); | 
| 107 | > | noneg(v) : if(v,v,0); | 
| 108 | > | red(r,g,b) : if(r,r,0); | 
| 109 | > | green(r,g,b) : if(g,g,0); | 
| 110 | > | blue(r,g,b) : if(b,b,0); | 
| 111 | > | grey(r,g,b) : noneg(.265074126*r + .670114631*g + .064811243*b); | 
| 112 | > | clip_r(r,g,b) : bound(0,r,1); | 
| 113 | > | clip_g(r,g,b) : bound(0,g,1); | 
| 114 | > | clip_b(r,g,b) : bound(0,b,1); | 
| 115 | > | clipgrey(r,g,b) : min(grey(r,g,b),1); | 
| 116 |  |  | 
| 117 |  | dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3); | 
| 118 |  | cross(i,v1,v2) : select(i,      v1(2)*v2(3) - v1(3)*v2(2), | 
| 119 |  | v1(3)*v2(1) - v1(1)*v2(3), | 
| 120 |  | v1(1)*v2(2) - v1(2)*v2(1)); | 
| 121 |  |  | 
| 122 | < | fade(near_val,far_val,dist) = far_val + | 
| 122 | > | fade(near_val,far_val,dist) : far_val + | 
| 123 |  | if (16-dist, (near_val-far_val)/(1+dist*dist), 0); | 
| 124 |  |  | 
| 125 | < | bezier(p1, p2, p3, p4, t) =     p1 * (1+t*(-3+t*(3-t))) + | 
| 125 | > | hermite(p0,p1,r0,r1,t) :        p0 * ((2*t-3)*t*t+1) + | 
| 126 | > | p1 * (-2*t+3)*t*t + | 
| 127 | > | r0 * (((t-2)*t+1)*t) + | 
| 128 | > | r1 * ((t-1)*t*t); | 
| 129 | > |  | 
| 130 | > | bezier(p1, p2, p3, p4, t) :     p1 * (1+t*(-3+t*(3-t))) + | 
| 131 |  | p2 * 3*t*(1+t*(-2+t)) + | 
| 132 |  | p3 * 3*t*t*(1-t) + | 
| 133 |  | p4 * t*t*t ; | 
| 134 |  |  | 
| 135 | < | bspline(pp, p0, p1, pn, t) =    pp * (1/6+t*(-.5+t*(.5-1/6*t))) + | 
| 135 | > | bspline(pp, p0, p1, pn, t) :    pp * (1/6+t*(-.5+t*(.5-1/6*t))) + | 
| 136 |  | p0 * (2/3+t*t*(-1+.5*t)) + | 
| 137 |  | p1 * (1/6+t*(.5+t*(.5-.5*t))) + | 
| 138 |  | pn * (1/6*t*t*t) ; | 
| 139 |  |  | 
| 140 | < | turbulence(x,y,z,s) = if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) + | 
| 140 | > | turbulence(x,y,z,s) : if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) + | 
| 141 |  | turbulence(x,y,z,2*s) ); | 
| 142 | < | turbulencea(x,y,z,s) = if( s-1.01, 0, | 
| 143 | < | sgn(noise3(x/s,y/s,z/s))*noise3a(x/s,y/s,z/s) + | 
| 144 | < | turbulencea(x,y,z,2*s) ); | 
| 145 | < | turbulenceb(x,y,z,s) = if( s-1.01, 0, | 
| 146 | < | sgn(noise3(x/s,y/s,z/s))*noise3b(x/s,y/s,z/s) + | 
| 147 | < | turbulenceb(x,y,z,2*s) ); | 
| 148 | < | turbulencec(x,y,z,s) = if( s-1.01, 0, | 
| 149 | < | sgn(noise3(x/s,y/s,z/s))*noise3c(x/s,y/s,z/s) + | 
| 150 | < | turbulencec(x,y,z,2*s) ); | 
| 142 | > | turbulencex(x,y,z,s) : if( s-1.01, 0, | 
| 143 | > | sgn(noise3(x/s,y/s,z/s))*noise3x(x/s,y/s,z/s) + | 
| 144 | > | turbulencex(x,y,z,2*s) ); | 
| 145 | > | turbulencey(x,y,z,s) : if( s-1.01, 0, | 
| 146 | > | sgn(noise3(x/s,y/s,z/s))*noise3y(x/s,y/s,z/s) + | 
| 147 | > | turbulencey(x,y,z,2*s) ); | 
| 148 | > | turbulencez(x,y,z,s) : if( s-1.01, 0, | 
| 149 | > | sgn(noise3(x/s,y/s,z/s))*noise3z(x/s,y/s,z/s) + | 
| 150 | > | turbulencez(x,y,z,2*s) ); | 
| 151 |  |  | 
| 152 | + | { Normal distribution from uniform range (0,1) } | 
| 153 | + |  | 
| 154 | + | un2`P.(t) : t - (2.515517+t*(.802853+t*.010328))/ | 
| 155 | + | (1+t*(1.432788+t*(.189269+t*.001308))) ; | 
| 156 | + | un1`P.(p) : un2`P.(sqrt(-2*log(p))) ; | 
| 157 | + |  | 
| 158 | + | unif2norm(p) : if( .5-p, -un1`P.(p), un1`P.(1-p) ) ; | 
| 159 | + |  | 
| 160 | + | nrand(x) = unif2norm(rand(x)); | 
| 161 | + |  | 
| 162 |  | { Local (u,v) coordinates for planar surfaces } | 
| 163 | < | crosslen`private = Nx*Nx + Ny*Ny; | 
| 164 | < | { U is distance from origin in XY-plane } | 
| 165 | < | U = if( crosslen`private - FTINY, | 
| 166 | < | (Py*Nx - Px*Ny)/crosslen`private, | 
| 163 | > | crosslen`P. = Nx*Nx + Ny*Ny; | 
| 164 | > | { U is distance from projected Z-axis } | 
| 165 | > | U = if( crosslen`P. - FTINY, | 
| 166 | > | (Py*Nx - Px*Ny)/crosslen`P., | 
| 167 |  | Px); | 
| 168 |  | { V is defined so that N = U x V } | 
| 169 | < | V = if( crosslen`private - FTINY, | 
| 170 | < | Pz - Nz*(Px*Nx + Py*Ny)/crosslen`private, | 
| 169 | > | V = if( crosslen`P. - FTINY, | 
| 170 | > | Pz - Nz*(Px*Nx + Py*Ny)/crosslen`P., | 
| 171 |  | Py); | 
| 172 | + |  | 
| 173 | + | { Local hemisphere direction for *func & *data types } | 
| 174 | + | { last 3 real args = unnormalized up-vector } | 
| 175 | + | Vux`P. = arg(AC-1)*NzP - arg(AC)*NyP; | 
| 176 | + | Vuy`P. = arg(AC)*NxP - arg(AC-2)*NzP; | 
| 177 | + | Vuz`P. = arg(AC-2)*NyP - arg(AC-1)*NxP; | 
| 178 | + | vnorm`P. = 1/sqrt(Vux`P.*Vux`P. + Vuy`P.*Vuy`P. + Vuz`P.*Vuz`P.); | 
| 179 | + | Vnx`P. = Vux`P.*vnorm`P.; | 
| 180 | + | Vny`P. = Vuy`P.*vnorm`P.; | 
| 181 | + | Vnz`P. = Vuz`P.*vnorm`P.; | 
| 182 | + | Unx`P. = NyP*Vnz`P. - NzP*Vny`P.; | 
| 183 | + | Uny`P. = NzP*Vnx`P. - NxP*Vnz`P.; | 
| 184 | + | Unz`P. = NxP*Vny`P. - NyP*Vnx`P.; | 
| 185 | + | { Transform vectors, normalized (dx,dy,dz) away from surf } | 
| 186 | + | Ldx(dx,dy,dz) = dx*Unx`P. + dy*Uny`P. + dz*Unz`P.; | 
| 187 | + | Ldy(dx,dy,dz) = dx*Vnx`P. + dy*Vny`P. + dz*Vnz`P.; | 
| 188 | + | Ldz(dx,dy,dz) = dx*NxP + dy*NyP + dz*NzP; | 
| 189 | + | { Incident vector transformed to our coords } | 
| 190 | + | Idx = Ldx(-Dx,-Dy,-Dz); | 
| 191 | + | Idy = Ldy(-Dx,-Dy,-Dz); | 
| 192 | + | Idz = RdotP; |