1 |
< |
{ SCCSid "$SunId$ LBL" } |
2 |
< |
|
1 |
> |
{ RCSid $Id$ } |
2 |
|
{ |
3 |
|
Initialization file for Radiance. |
4 |
|
|
8 |
|
Nx, Ny, Nz - surface normal |
9 |
|
Px, Py, Pz - intersection point |
10 |
|
T - distance from start |
11 |
+ |
Ts - single ray (shadow) distance |
12 |
|
Rdot - ray dot product |
13 |
|
S - world scale |
14 |
|
Tx, Ty, Tz - world origin |
17 |
|
Kx, Ky, Kz - world k unit vector |
18 |
|
arg(n) - real arguments, arg(0) is count |
19 |
|
|
20 |
< |
For brdf functions, the following are also available: |
20 |
> |
For mesh objects, the following are available: |
21 |
|
|
22 |
+ |
Lu, Lv - local (u,v) coordinates |
23 |
+ |
|
24 |
+ |
For *func & *data materials, the following are also available: |
25 |
+ |
|
26 |
|
NxP, NyP, NzP - perturbed surface normal |
27 |
|
RdotP - perturbed ray dot product |
28 |
|
CrP, CgP, CbP - perturbed material color |
29 |
|
|
30 |
+ |
For prism1 and prism2 types, the following are available: |
31 |
+ |
|
32 |
+ |
DxA, DyA, DzA - direction to target light source |
33 |
+ |
|
34 |
|
Library functions: |
35 |
|
|
36 |
|
if(a, b, c) - if a positive, return b, else c |
37 |
|
|
38 |
|
select(N, a1, a2, ..) - return aN |
39 |
|
|
40 |
+ |
min(a1, a2, ..) - return minimum argument |
41 |
+ |
max(a1, a2, ..) - return maximum argument |
42 |
+ |
|
43 |
|
sqrt(x) - square root function |
44 |
|
|
45 |
|
sin(x), cos(x), tan(x), |
46 |
|
asin(x), acos(x), |
47 |
< |
atan(x), atan2(y,x) - standard trig functions |
47 |
> |
atan(x), atan2(y,x) - standard trig functions (radians) |
48 |
|
|
49 |
|
floor(x), ceil(x) - g.l.b. & l.u.b. |
50 |
|
|
54 |
|
|
55 |
|
rand(x) - pseudo-random function (0 to 1) |
56 |
|
|
57 |
< |
hermite(p0,p1,r0,r1,t) - 1-dimensional hermite polynomial |
57 |
> |
noise3(x,y,z), noise3x(x,y,z), |
58 |
> |
noise3y(x,y,z), noise3z(x,y,z) - noise function with gradient (-1 to 1) |
59 |
|
|
48 |
– |
noise3(x,y,z), noise3a(x,y,z), |
49 |
– |
noise3b(x,y,z), noise3c(x,y,z) - noise function with gradient (-1 to 1) |
50 |
– |
|
60 |
|
fnoise3(x,y,z) - fractal noise function (-1 to 1) |
61 |
|
} |
62 |
|
|
65 |
|
A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5); |
66 |
|
A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10); |
67 |
|
|
68 |
+ |
noise3a(x,y,z) : noise3x(x,y,z); |
69 |
+ |
noise3b(x,y,z) : noise3y(x,y,z); |
70 |
+ |
noise3c(x,y,z) : noise3z(x,y,z); |
71 |
+ |
|
72 |
|
{ Forward compatibility (?) } |
73 |
|
D(i) = select(i, Dx, Dy, Dz); |
74 |
|
N(i) = select(i, Nx, Ny, Nz); |
75 |
|
P(i) = select(i, Px, Py, Pz); |
76 |
< |
noise3d(i,x,y,z) = select(i, noise3a(x,y,z), noise3b(x,y,z), noise3c(x,y,z)); |
76 |
> |
noise3d(i,x,y,z) : select(i, noise3x(x,y,z), noise3y(x,y,z), noise3z(x,y,z)); |
77 |
|
|
78 |
|
{ More robust versions of library functions } |
79 |
|
bound(a,x,b) : if(a-x, a, if(x-b, b, x)); |
80 |
|
Acos(x) : acos(bound(-1,x,1)); |
81 |
|
Asin(x) : asin(bound(-1,x,1)); |
82 |
< |
Exp(x) : if(-x-60, 0, exp(x)); |
82 |
> |
Atan2(y,x) : if(x*x+y*y, atan2(y,x), 0); |
83 |
> |
Exp(x) : if(-x-100, 0, exp(x)); |
84 |
|
Sqrt(x) : if(x, sqrt(x), 0); |
85 |
|
|
86 |
|
{ Useful constants } |
92 |
|
and(a,b) : if( a, b, a ); |
93 |
|
or(a,b) : if( a, a, b ); |
94 |
|
not(a) : if( a, -1, 1 ); |
95 |
+ |
xor(a,b) : if( a, not(b), b ); |
96 |
|
abs(x) : if( x, x, -x ); |
97 |
|
sgn(x) : if( x, 1, if(-x, -1, 0) ); |
98 |
|
sq(x) : x*x; |
84 |
– |
max(a,b) : if( a-b, a, b ); |
85 |
– |
min(a,b) : if( a-b, b, a ); |
99 |
|
inside(a,x,b) : and(x-a,b-x); |
100 |
|
frac(x) : x - floor(x); |
101 |
|
mod(n,d) : n - floor(n/d)*d; |
102 |
|
tri(n,d) : abs( d - mod(n-d,2*d) ); |
103 |
|
linterp(t,p0,p1) : (1-t)*p0 + t*p1; |
104 |
|
|
105 |
< |
noop(v) = v; |
106 |
< |
clip(v) = bound(0,v,1); |
107 |
< |
noneg(v) = max(0,v); |
108 |
< |
red(r,g,b) = r; |
109 |
< |
green(r,g,b) = g; |
110 |
< |
blue(r,g,b) = b; |
111 |
< |
grey(r,g,b) = .3*r + .59*g + .11*b; |
112 |
< |
clip_r(r,g,b) = bound(0,r,1); |
113 |
< |
clip_g(r,g,b) = bound(0,g,1); |
114 |
< |
clip_b(r,g,b) = bound(0,b,1); |
115 |
< |
clipgrey(r,g,b) = bound(0,grey(r,g,b),1); |
105 |
> |
noop(v) : v; |
106 |
> |
clip(v) : bound(0,v,1); |
107 |
> |
noneg(v) : if(v,v,0); |
108 |
> |
red(r,g,b) : if(r,r,0); |
109 |
> |
green(r,g,b) : if(g,g,0); |
110 |
> |
blue(r,g,b) : if(b,b,0); |
111 |
> |
grey(r,g,b) : noneg(.265074126*r + .670114631*g + .064811243*b); |
112 |
> |
clip_r(r,g,b) : bound(0,r,1); |
113 |
> |
clip_g(r,g,b) : bound(0,g,1); |
114 |
> |
clip_b(r,g,b) : bound(0,b,1); |
115 |
> |
clipgrey(r,g,b) : min(grey(r,g,b),1); |
116 |
|
|
117 |
|
dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3); |
118 |
|
cross(i,v1,v2) : select(i, v1(2)*v2(3) - v1(3)*v2(2), |
119 |
|
v1(3)*v2(1) - v1(1)*v2(3), |
120 |
|
v1(1)*v2(2) - v1(2)*v2(1)); |
121 |
|
|
122 |
< |
fade(near_val,far_val,dist) = far_val + |
122 |
> |
fade(near_val,far_val,dist) : far_val + |
123 |
|
if (16-dist, (near_val-far_val)/(1+dist*dist), 0); |
124 |
|
|
125 |
< |
bezier(p1, p2, p3, p4, t) = p1 * (1+t*(-3+t*(3-t))) + |
125 |
> |
hermite(p0,p1,r0,r1,t) : p0 * ((2*t-3)*t*t+1) + |
126 |
> |
p1 * (-2*t+3)*t*t + |
127 |
> |
r0 * (((t-2)*t+1)*t) + |
128 |
> |
r1 * ((t-1)*t*t); |
129 |
> |
|
130 |
> |
bezier(p1, p2, p3, p4, t) : p1 * (1+t*(-3+t*(3-t))) + |
131 |
|
p2 * 3*t*(1+t*(-2+t)) + |
132 |
|
p3 * 3*t*t*(1-t) + |
133 |
|
p4 * t*t*t ; |
134 |
|
|
135 |
< |
bspline(pp, p0, p1, pn, t) = pp * (1/6+t*(-.5+t*(.5-1/6*t))) + |
135 |
> |
bspline(pp, p0, p1, pn, t) : pp * (1/6+t*(-.5+t*(.5-1/6*t))) + |
136 |
|
p0 * (2/3+t*t*(-1+.5*t)) + |
137 |
|
p1 * (1/6+t*(.5+t*(.5-.5*t))) + |
138 |
|
pn * (1/6*t*t*t) ; |
139 |
|
|
140 |
< |
turbulence(x,y,z,s) = if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) + |
140 |
> |
turbulence(x,y,z,s) : if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) + |
141 |
|
turbulence(x,y,z,2*s) ); |
142 |
< |
turbulencea(x,y,z,s) = if( s-1.01, 0, |
143 |
< |
sgn(noise3(x/s,y/s,z/s))*noise3a(x/s,y/s,z/s) + |
144 |
< |
turbulencea(x,y,z,2*s) ); |
145 |
< |
turbulenceb(x,y,z,s) = if( s-1.01, 0, |
146 |
< |
sgn(noise3(x/s,y/s,z/s))*noise3b(x/s,y/s,z/s) + |
147 |
< |
turbulenceb(x,y,z,2*s) ); |
148 |
< |
turbulencec(x,y,z,s) = if( s-1.01, 0, |
149 |
< |
sgn(noise3(x/s,y/s,z/s))*noise3c(x/s,y/s,z/s) + |
150 |
< |
turbulencec(x,y,z,2*s) ); |
142 |
> |
turbulencex(x,y,z,s) : if( s-1.01, 0, |
143 |
> |
sgn(noise3(x/s,y/s,z/s))*noise3x(x/s,y/s,z/s) + |
144 |
> |
turbulencex(x,y,z,2*s) ); |
145 |
> |
turbulencey(x,y,z,s) : if( s-1.01, 0, |
146 |
> |
sgn(noise3(x/s,y/s,z/s))*noise3y(x/s,y/s,z/s) + |
147 |
> |
turbulencey(x,y,z,2*s) ); |
148 |
> |
turbulencez(x,y,z,s) : if( s-1.01, 0, |
149 |
> |
sgn(noise3(x/s,y/s,z/s))*noise3z(x/s,y/s,z/s) + |
150 |
> |
turbulencez(x,y,z,2*s) ); |
151 |
|
|
152 |
|
{ Normal distribution from uniform range (0,1) } |
153 |
|
|
154 |
< |
un2`private(t) : t - (2.515517+t*(.802853+t*.010328))/ |
154 |
> |
un2`P.(t) : t - (2.515517+t*(.802853+t*.010328))/ |
155 |
|
(1+t*(1.432788+t*(.189269+t*.001308))) ; |
156 |
< |
un1`private(p) : un2`private(sqrt(log(1/p/p))) ; |
156 |
> |
un1`P.(p) : un2`P.(sqrt(-2*log(p))) ; |
157 |
|
|
158 |
< |
unif2norm(p) : if( .5-p, un1`private(p), -un1`private(1-p) ) ; |
158 |
> |
unif2norm(p) : if( .5-p, -un1`P.(p), un1`P.(1-p) ) ; |
159 |
|
|
160 |
|
nrand(x) = unif2norm(rand(x)); |
161 |
|
|
162 |
|
{ Local (u,v) coordinates for planar surfaces } |
163 |
< |
crosslen`private = Nx*Nx + Ny*Ny; |
164 |
< |
{ U is distance from origin in XY-plane } |
165 |
< |
U = if( crosslen`private - FTINY, |
166 |
< |
(Py*Nx - Px*Ny)/crosslen`private, |
163 |
> |
crosslen`P. = Nx*Nx + Ny*Ny; |
164 |
> |
{ U is distance from projected Z-axis } |
165 |
> |
U = if( crosslen`P. - FTINY, |
166 |
> |
(Py*Nx - Px*Ny)/crosslen`P., |
167 |
|
Px); |
168 |
|
{ V is defined so that N = U x V } |
169 |
< |
V = if( crosslen`private - FTINY, |
170 |
< |
Pz - Nz*(Px*Nx + Py*Ny)/crosslen`private, |
169 |
> |
V = if( crosslen`P. - FTINY, |
170 |
> |
Pz - Nz*(Px*Nx + Py*Ny)/crosslen`P., |
171 |
|
Py); |
172 |
+ |
|
173 |
+ |
{ Local hemisphere direction for *func & *data types } |
174 |
+ |
{ last 3 real args = unnormalized up-vector } |
175 |
+ |
Vux`P. = arg(AC-1)*NzP - arg(AC)*NyP; |
176 |
+ |
Vuy`P. = arg(AC)*NxP - arg(AC-2)*NzP; |
177 |
+ |
Vuz`P. = arg(AC-2)*NyP - arg(AC-1)*NxP; |
178 |
+ |
vnorm`P. = 1/sqrt(Vux`P.*Vux`P. + Vuy`P.*Vuy`P. + Vuz`P.*Vuz`P.); |
179 |
+ |
Vnx`P. = Vux`P.*vnorm`P.; |
180 |
+ |
Vny`P. = Vuy`P.*vnorm`P.; |
181 |
+ |
Vnz`P. = Vuz`P.*vnorm`P.; |
182 |
+ |
Unx`P. = NyP*Vnz`P. - NzP*Vny`P.; |
183 |
+ |
Uny`P. = NzP*Vnx`P. - NxP*Vnz`P.; |
184 |
+ |
Unz`P. = NxP*Vny`P. - NyP*Vnx`P.; |
185 |
+ |
{ Transform vectors, normalized (dx,dy,dz) away from surf } |
186 |
+ |
Ldx(dx,dy,dz) = dx*Unx`P. + dy*Uny`P. + dz*Unz`P.; |
187 |
+ |
Ldy(dx,dy,dz) = dx*Vnx`P. + dy*Vny`P. + dz*Vnz`P.; |
188 |
+ |
Ldz(dx,dy,dz) = dx*NxP + dy*NyP + dz*NzP; |
189 |
+ |
{ Incident vector transformed to our coords } |
190 |
+ |
Idx = Ldx(-Dx,-Dy,-Dz); |
191 |
+ |
Idy = Ldy(-Dx,-Dy,-Dz); |
192 |
+ |
Idz = RdotP; |